cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A319083 Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1
Offset: 0

Views

Author

Peter Luschny, Oct 03 2018

Keywords

Comments

Column k is the k-fold self-convolution of sigma (A000203). - Alois P. Heinz, Feb 01 2021
For fixed k, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / (6^k * (2*k)!). - Vaclav Kotesovec, Sep 20 2024

Examples

			Triangle starts:
[0] 1;
[1] 0,  1;
[2] 0,  3,   1;
[3] 0,  4,   6,    1;
[4] 0,  7,  17,    9,    1;
[5] 0,  6,  38,   39,   12,    1;
[6] 0, 12,  70,  120,   70,   15,   1;
[7] 0,  8, 116,  300,  280,  110,  18,   1;
[8] 0, 15, 185,  645,  885,  545, 159,  21,  1;
[9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
		

Crossrefs

Columns k=0..6 give: A000007, A000203, A000385, A374951, A374977, A374978, A374979.
Row sums are A180305.
T(2n,n) gives A340993.

Programs

  • Maple
    P := proc(n, x) option remember; if n = 0 then 1 else
    x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
    Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
    seq(Trow(n), n=0..9);
    # second Maple program:
    T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 01 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
         If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
         With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)

Formula

The polynomials are defined by recurrence: p(0,x) = 1 and for n > 0 by
p(n, x) = x*Sum_{k=0..n-1} sigma(n-k)*p(k, x).
Sum_{k=0..n} (-1)^k * T(n,k) = A283334(n). - Alois P. Heinz, Feb 07 2025

A320649 Expansion of 1/(1 - Sum_{k>=1} k^2*x^k/(1 - x^k)).

Original entry on oeis.org

1, 1, 6, 21, 82, 294, 1116, 4103, 15326, 56833, 211454, 785441, 2920058, 10851016, 40331874, 149892024, 557098510, 2070493098, 7695228038, 28600012305, 106294901116, 395055313662, 1468262641770, 5456942875386, 20281270503914, 75377349437075, 280147395367820
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 18 2018

Keywords

Comments

Invert transform of A001157.

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(k^2*x^k/(1-x^k),k=1..100)),x=0,27): seq(coeff(a,x,n),n=0..26); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 26; CoefficientList[Series[1/(1 - Sum[k^2 x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 26; CoefficientList[Series[1/(1 + x D[Log[Product[(1 - x^k)^k, {k, 1, nmax}]], x]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[2, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}]

Formula

G.f.: 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^k)^k)).
a(0) = 1; a(n) = Sum_{k=1..n} sigma_2(k)*a(n-k).

A340904 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * sigma_1(k) * a(n-k).

Original entry on oeis.org

1, 1, 5, 28, 225, 2206, 26174, 361278, 5704401, 101297701, 1998893240, 43386854622, 1027353587730, 26353742447280, 728030940612638, 21548668265211778, 680330296613877761, 22821706122361385354, 810587673640374442445, 30390159250481750866640
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] DivisorSigma[1, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(1 - Sum[Sum[i x^(i j)/(i j)!, {j, 1, nmax}], {i, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, sigma(k)*x^k/k!)))) \\ Seiichi Manyama, Mar 29 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k)*binomial(n, k)*a(n-k))); \\ Seiichi Manyama, Mar 29 2022

Formula

E.g.f.: 1 / (1 - Sum_{i>=1} Sum_{j>=1} i * x^(i*j) / (i*j)!).
E.g.f.: 1 / (1 - Sum_{k>=1} sigma_1(k) * x^k/k!). - Seiichi Manyama, Mar 29 2022

A283334 G.f.: 1/(1 - x*d/dx log(eta(x))), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.

Original entry on oeis.org

1, -1, -2, 1, 2, 4, -6, -5, 4, 1, 18, -13, -26, 4, 22, 66, -76, -78, 66, 37, 122, -136, -144, 10, 54, 599, -368, -746, 196, 568, 744, -938, -156, -312, -1428, 2720, 3340, -2324, -8588, 1520, 8814, 4846, 1380, -16565, -16966, -6324, 79170, 47250, -160346
Offset: 0

Views

Author

Seiichi Manyama, Mar 05 2017

Keywords

Examples

			G.f.: A(x) = 1 - x - 2*x^2 + x^3 + 2*x^4 + 4*x^5 - 6*x^6 - 5*x^7 + ...
1/A(x) = 1 - x*d/dx log(eta(x)) = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + ... + sigma(n)*x^n + ...
eta(x)^3/A(x) = 1 - 2*x + 7*x^6 - 21*x^10 + 44*x^15 - 78*x^21 + ... + A184366(n)*x^n + ...
		

Crossrefs

Cf. A180305 (1/(1 + x*d/dx log(eta(x)))), A184366, A319083.

Programs

  • PARI
    lista(nn) = {va = vector(nn); va[1] = 1; for (n=1, nn-1, va[n+1] = -sum(k=0, n-1, sigma(n-k)*va[k+1]);); va;} \\ Michel Marcus, Mar 05 2017

Formula

a(n) = -Sum_{k=0..n-1} sigma(n-k)*a(k) for n>0 with a(0) = 1.
G.f.: 1/(1 + Sum_{k>=1} k*x^k/(1 - x^k)). - Ilya Gutkovskiy, Oct 18 2018
a(n) = Sum_{k=0..n} (-1)^k * A319083(n,k). - Alois P. Heinz, Feb 07 2025

A300671 Expansion of 1/(1 - Sum_{k>=1} x^prime(k)/(1 - x^prime(k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 8, 15, 23, 40, 63, 108, 172, 290, 471, 782, 1280, 2119, 3474, 5741, 9432, 15557, 25590, 42180, 69413, 114371, 188276, 310136, 510637, 841045, 1384883, 2280831, 3755862, 6185457, 10185941, 16774695, 27624215, 45492412, 74916559, 123374127, 203172520, 334587577
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001221.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*nops(ifactors(i)[2]), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 42; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[1/(1 - Sum[PrimeNu[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeNu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001221(k)*x^k).

A316961 Expansion of Product_{k>=1} 1/(1 - sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 1, 4, 8, 24, 42, 118, 208, 524, 961, 2191, 3994, 9020, 16142, 34500, 62814, 130496, 234474, 478334, 855982, 1712012, 3061230, 6003546, 10689178, 20783796, 36789875, 70540531, 124812892, 237022708, 417422168, 786509778, 1381137702, 2583046168, 4526024200, 8402928681
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1/(1-sigma(k)*x^k),k=1..100),x=0,35): seq(coeff(a,x,n),n=0..34); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 - DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 34; CoefficientList[Series[Exp[Sum[Sum[DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} sigma(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Jul 28 2018: (Start)
a(n) ~ c * 3^(n/2), where
c = 133.83151651318934683776776253692818185240361972305... if n is even and
c = 131.63961163168586786976253326691345807212512512772... if n is odd.
In closed form, a(n) ~ ((3 + sqrt(3)) * Product_{k>=3} (1/(1 - sigma(k) / 3^(k/2))) + (-1)^n * (3 - sqrt(3)) * Product_{k>=3} (1/(1 - (-1)^k * sigma(k) / 3^(k/2)))) * 3^(n/2) / 4. (End)

A300672 Expansion of 1/(1 - Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k))).

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 10, 23, 32, 64, 98, 187, 296, 543, 891, 1595, 2660, 4694, 7924, 13854, 23556, 40940, 69939, 121122, 207490, 358517, 615292, 1061635, 1824013, 3144404, 5406257, 9314645, 16021922, 27595176, 47478950, 81757104, 140691461, 242232918, 416890645, 717712748, 1235289624
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001222.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*numtheory[bigomega](i), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 41; CoefficientList[Series[1/(1 - Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 41; CoefficientList[Series[1/(1 - Sum[PrimeOmega[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeOmega[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 41}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001222(k)*x^k).

A305305 Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^k/(k*(1 - x^k))).

Original entry on oeis.org

1, 1, 5, 32, 292, 3174, 42758, 659028, 11725656, 233646240, 5183599152, 126353158656, 3362529785712, 96896454983184, 3007687250735568, 100017757744279584, 3547903924884082176, 133715849506895518848, 5336112511923188151168, 224772952826373341478912, 9966476790792153522756864
Offset: 0

Views

Author

Ilya Gutkovskiy, May 29 2018

Keywords

Comments

a(n)/n! is the invert transform of [1, 3/2, 4/3, 7/4, 6/5, ... = sums of reciprocals of divisors of 1, 2, 3, 4, 5, ...].

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 32*x^3/3! + 292*x^4/4! + 3174*x^5/5! + 42758*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          1/d, d=numtheory[divisors](j))*b(n-j), j=1..n))
        end:
    a:= n-> b(n)*n!:
    seq(a(n), n=0..20);  # Alois P. Heinz, May 29 2018
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - Sum[x^k/(k (1 - x^k)), {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 20; CoefficientList[Series[1/(1 - Sum[DivisorSigma[-1, k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[-1, k] a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 20}]

Formula

E.g.f.: 1/(1 - Sum_{k>=1} (sigma(k)/k)*x^k), where sigma() = A000203.
E.g.f.: 1/(1 - Sum_{k>=1} (A017665(k)/A017666(k))*x^k).
E.g.f.: 1/(1 - log(f(x))), where f(x) = o.g.f. for A000041, Product_{k>=1} 1/(1 - x^k).

A316962 Expansion of Product_{k>=1} (1 + sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 1, 3, 7, 11, 25, 51, 87, 129, 286, 462, 760, 1312, 2102, 3470, 5988, 8840, 13884, 22577, 33545, 55961, 85341, 126705, 194317, 293621, 435040, 641472, 971503, 1462483, 2108161, 3124489, 4474579, 6545809, 9561923, 13518678, 19809034, 28387625, 40286631, 57039233
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 17 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1+sigma(k)*x^k,k=1..100),x=0,39): seq(coeff(a,x,n),n=0..38); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 38; CoefficientList[Series[Product[(1 + DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 38; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*sigma(j)^k*x^(j*k)/k).

A320651 Expansion of 1/(1 - Sum_{k>=1} k*x^k/(1 + x^k)).

Original entry on oeis.org

1, 1, 2, 7, 14, 36, 90, 213, 520, 1271, 3082, 7493, 18238, 44324, 107782, 262142, 637368, 1549870, 3768886, 9164499, 22285034, 54190024, 131771616, 320424614, 779166270, 1894671121, 4607207304, 11203190618, 27242414612, 66244451632, 161084380040, 391703392954
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 18 2018

Keywords

Comments

Invert transform of A000593.

Crossrefs

Programs

  • Maple
    a:=series(1/(1-add(k*x^k/(1+x^k),k=1..100)),x=0,32): seq(coeff(a,x,n),n=0..31); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 31; CoefficientList[Series[1/(1 - Sum[k x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[24/(25 - EllipticTheta[2, 0, x]^4 - EllipticTheta[3, 0, x]^4), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 31}]

Formula

G.f.: 1/(1 - x * (d/dx) log(Product_{k>=1} (1 + x^k))).
G.f.: 24/(25 - theta_2(x)^4 - theta_3(x)^4), where theta_() is the Jacobi theta function.
a(0) = 1; a(n) = Sum_{k=1..n} A000593(k)*a(n-k).
Showing 1-10 of 16 results. Next