A319083
Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 3, 1;
[3] 0, 4, 6, 1;
[4] 0, 7, 17, 9, 1;
[5] 0, 6, 38, 39, 12, 1;
[6] 0, 12, 70, 120, 70, 15, 1;
[7] 0, 8, 116, 300, 280, 110, 18, 1;
[8] 0, 15, 185, 645, 885, 545, 159, 21, 1;
[9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
-
P := proc(n, x) option remember; if n = 0 then 1 else
x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
seq(Trow(n), n=0..9);
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 01 2021
# Uses function PMatrix from A357368.
PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)
A320649
Expansion of 1/(1 - Sum_{k>=1} k^2*x^k/(1 - x^k)).
Original entry on oeis.org
1, 1, 6, 21, 82, 294, 1116, 4103, 15326, 56833, 211454, 785441, 2920058, 10851016, 40331874, 149892024, 557098510, 2070493098, 7695228038, 28600012305, 106294901116, 395055313662, 1468262641770, 5456942875386, 20281270503914, 75377349437075, 280147395367820
Offset: 0
-
a:=series(1/(1-add(k^2*x^k/(1-x^k),k=1..100)),x=0,27): seq(coeff(a,x,n),n=0..26); # Paolo P. Lava, Apr 02 2019
-
nmax = 26; CoefficientList[Series[1/(1 - Sum[k^2 x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 26; CoefficientList[Series[1/(1 + x D[Log[Product[(1 - x^k)^k, {k, 1, nmax}]], x]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[2, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 26}]
A340904
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * sigma_1(k) * a(n-k).
Original entry on oeis.org
1, 1, 5, 28, 225, 2206, 26174, 361278, 5704401, 101297701, 1998893240, 43386854622, 1027353587730, 26353742447280, 728030940612638, 21548668265211778, 680330296613877761, 22821706122361385354, 810587673640374442445, 30390159250481750866640
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] DivisorSigma[1, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[1/(1 - Sum[Sum[i x^(i j)/(i j)!, {j, 1, nmax}], {i, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, sigma(k)*x^k/k!)))) \\ Seiichi Manyama, Mar 29 2022
-
a(n) = if(n==0, 1, sum(k=1, n, sigma(k)*binomial(n, k)*a(n-k))); \\ Seiichi Manyama, Mar 29 2022
A283334
G.f.: 1/(1 - x*d/dx log(eta(x))), where eta(x) is Dedekind's eta(q) function without the q^(1/24) factor.
Original entry on oeis.org
1, -1, -2, 1, 2, 4, -6, -5, 4, 1, 18, -13, -26, 4, 22, 66, -76, -78, 66, 37, 122, -136, -144, 10, 54, 599, -368, -746, 196, 568, 744, -938, -156, -312, -1428, 2720, 3340, -2324, -8588, 1520, 8814, 4846, 1380, -16565, -16966, -6324, 79170, 47250, -160346
Offset: 0
G.f.: A(x) = 1 - x - 2*x^2 + x^3 + 2*x^4 + 4*x^5 - 6*x^6 - 5*x^7 + ...
1/A(x) = 1 - x*d/dx log(eta(x)) = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + ... + sigma(n)*x^n + ...
eta(x)^3/A(x) = 1 - 2*x + 7*x^6 - 21*x^10 + 44*x^15 - 78*x^21 + ... + A184366(n)*x^n + ...
-
lista(nn) = {va = vector(nn); va[1] = 1; for (n=1, nn-1, va[n+1] = -sum(k=0, n-1, sigma(n-k)*va[k+1]);); va;} \\ Michel Marcus, Mar 05 2017
A300671
Expansion of 1/(1 - Sum_{k>=1} x^prime(k)/(1 - x^prime(k))).
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 6, 8, 15, 23, 40, 63, 108, 172, 290, 471, 782, 1280, 2119, 3474, 5741, 9432, 15557, 25590, 42180, 69413, 114371, 188276, 310136, 510637, 841045, 1384883, 2280831, 3755862, 6185457, 10185941, 16774695, 27624215, 45492412, 74916559, 123374127, 203172520, 334587577
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*nops(ifactors(i)[2]), i=1..n))
end:
seq(a(n), n=0..42); # Alois P. Heinz, Feb 11 2021
-
nmax = 42; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 42; CoefficientList[Series[1/(1 - Sum[PrimeNu[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PrimeNu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]
A316961
Expansion of Product_{k>=1} 1/(1 - sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).
Original entry on oeis.org
1, 1, 4, 8, 24, 42, 118, 208, 524, 961, 2191, 3994, 9020, 16142, 34500, 62814, 130496, 234474, 478334, 855982, 1712012, 3061230, 6003546, 10689178, 20783796, 36789875, 70540531, 124812892, 237022708, 417422168, 786509778, 1381137702, 2583046168, 4526024200, 8402928681
Offset: 0
-
with(numtheory): a:=series(mul(1/(1-sigma(k)*x^k),k=1..100),x=0,35): seq(coeff(a,x,n),n=0..34); # Paolo P. Lava, Apr 02 2019
-
nmax = 34; CoefficientList[Series[Product[1/(1 - DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 34; CoefficientList[Series[Exp[Sum[Sum[DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]
A300672
Expansion of 1/(1 - Sum_{p prime, k>=1} x^(p^k)/(1 - x^(p^k))).
Original entry on oeis.org
1, 0, 1, 1, 3, 3, 8, 10, 23, 32, 64, 98, 187, 296, 543, 891, 1595, 2660, 4694, 7924, 13854, 23556, 40940, 69939, 121122, 207490, 358517, 615292, 1061635, 1824013, 3144404, 5406257, 9314645, 16021922, 27595176, 47478950, 81757104, 140691461, 242232918, 416890645, 717712748, 1235289624
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*numtheory[bigomega](i), i=1..n))
end:
seq(a(n), n=0..42); # Alois P. Heinz, Feb 11 2021
-
nmax = 41; CoefficientList[Series[1/(1 - Sum[Boole[PrimePowerQ[k]] x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 41; CoefficientList[Series[1/(1 - Sum[PrimeOmega[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[PrimeOmega[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 41}]
A305305
Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^k/(k*(1 - x^k))).
Original entry on oeis.org
1, 1, 5, 32, 292, 3174, 42758, 659028, 11725656, 233646240, 5183599152, 126353158656, 3362529785712, 96896454983184, 3007687250735568, 100017757744279584, 3547903924884082176, 133715849506895518848, 5336112511923188151168, 224772952826373341478912, 9966476790792153522756864
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 32*x^3/3! + 292*x^4/4! + 3174*x^5/5! + 42758*x^6/6! + ...
-
b:= proc(n) option remember; `if`(n=0, 1, add(add(
1/d, d=numtheory[divisors](j))*b(n-j), j=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..20); # Alois P. Heinz, May 29 2018
-
nmax = 20; CoefficientList[Series[1/(1 - Sum[x^k/(k (1 - x^k)), {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[1/(1 - Sum[DivisorSigma[-1, k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[-1, k] a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
A316962
Expansion of Product_{k>=1} (1 + sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).
Original entry on oeis.org
1, 1, 3, 7, 11, 25, 51, 87, 129, 286, 462, 760, 1312, 2102, 3470, 5988, 8840, 13884, 22577, 33545, 55961, 85341, 126705, 194317, 293621, 435040, 641472, 971503, 1462483, 2108161, 3124489, 4474579, 6545809, 9561923, 13518678, 19809034, 28387625, 40286631, 57039233
Offset: 0
-
with(numtheory): a:=series(mul(1+sigma(k)*x^k,k=1..100),x=0,39): seq(coeff(a,x,n),n=0..38); # Paolo P. Lava, Apr 02 2019
-
nmax = 38; CoefficientList[Series[Product[(1 + DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 38; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]
A320651
Expansion of 1/(1 - Sum_{k>=1} k*x^k/(1 + x^k)).
Original entry on oeis.org
1, 1, 2, 7, 14, 36, 90, 213, 520, 1271, 3082, 7493, 18238, 44324, 107782, 262142, 637368, 1549870, 3768886, 9164499, 22285034, 54190024, 131771616, 320424614, 779166270, 1894671121, 4607207304, 11203190618, 27242414612, 66244451632, 161084380040, 391703392954
Offset: 0
-
a:=series(1/(1-add(k*x^k/(1+x^k),k=1..100)),x=0,32): seq(coeff(a,x,n),n=0..31); # Paolo P. Lava, Apr 02 2019
-
nmax = 31; CoefficientList[Series[1/(1 - Sum[k x^k/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 31; CoefficientList[Series[24/(25 - EllipticTheta[2, 0, x]^4 - EllipticTheta[3, 0, x]^4), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 31}]
Showing 1-10 of 16 results.
Comments