cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340903 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * sigma_0(k) * a(n-k).

Original entry on oeis.org

1, 1, 4, 20, 139, 1192, 12318, 148318, 2041754, 31616757, 544005172, 10296204096, 212589150300, 4755177958104, 114545293676588, 2956316416222300, 81386676426000157, 2380590235918735576, 73729207700492304684, 2410324868012471929670, 82944575892433740648996
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[1/(1 - Sum[Sum[x^(i j)/(i j)!, {j, 1, nmax}], {i, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k!)))) \\ Seiichi Manyama, Mar 29 2022
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, numdiv(k)*binomial(n, k)*a(n-k))); \\ Seiichi Manyama, Mar 29 2022

Formula

E.g.f.: 1 / (1 - Sum_{i>=1} Sum_{j>=1} x^(i*j) / (i*j)!).
E.g.f.: 1 / (1 - Sum_{k>=1} sigma_0(k) * x^k/k!). - Seiichi Manyama, Mar 29 2022

A352693 Expansion of e.g.f. 1 / (1 - Sum_{k>=1} sigma_2(k) * x^k/k!).

Original entry on oeis.org

1, 1, 7, 46, 455, 5406, 78172, 1312116, 25214479, 544777183, 13080808752, 345471545728, 9953804592152, 310687941345796, 10443489230611052, 376122782541917166, 14449157656748079247, 589772212576633845886, 25488817336672959449725
Offset: 0

Views

Author

Seiichi Manyama, Mar 29 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, sigma(k, 2)*x^k/k!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, 2)*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_2(k) * binomial(n,k) * a(n-k).

A352841 Expansion of e.g.f. 1/(1 - Sum_{k>=1} sigma_k(k) * x^k/k!).

Original entry on oeis.org

1, 1, 7, 64, 851, 13906, 277972, 6466650, 172651643, 5186830537, 173327806752, 6373233407498, 255743444526584, 11119651415719744, 520752884139087852, 26132341317365562754, 1398900109763305183707, 79569524691656775423766
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, sigma(k, k)*x^k/k!))))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_k(k) * binomial(n,k) * a(n-k).
Showing 1-3 of 3 results.