cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A300671 Expansion of 1/(1 - Sum_{k>=1} x^prime(k)/(1 - x^prime(k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 8, 15, 23, 40, 63, 108, 172, 290, 471, 782, 1280, 2119, 3474, 5741, 9432, 15557, 25590, 42180, 69413, 114371, 188276, 310136, 510637, 841045, 1384883, 2280831, 3755862, 6185457, 10185941, 16774695, 27624215, 45492412, 74916559, 123374127, 203172520, 334587577
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001221.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*nops(ifactors(i)[2]), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 42; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[1/(1 - Sum[PrimeNu[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeNu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001221(k)*x^k).
Showing 1-1 of 1 results.