A321262 Expansion of 1/(1 - Sum_{k>=1} k*x^(2*k)/(1 - x^k)).
1, 0, 1, 1, 4, 3, 14, 12, 43, 50, 140, 177, 474, 643, 1560, 2325, 5246, 8194, 17763, 28838, 60190, 101063, 204935, 352227, 700037, 1224816, 2394971, 4250616, 8209174, 14724570, 28175997, 50949079, 96797183, 176131780, 332804667, 608449008, 1144920041, 2100793404
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
Programs
-
Maple
a:=series(1/(1-add(k*x^(2*k)/(1-x^k),k=1..100)),x=0,38): seq(coeff(a,x,n),n=0..37); # Paolo P. Lava, Apr 02 2019
-
Mathematica
nmax = 37; CoefficientList[Series[1/(1 - Sum[k x^(2 k)/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x] nmax = 37; CoefficientList[Series[1/(1 - Sum[(k - EulerPhi[k]) x^k/(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = Sum[(DivisorSigma[1, k] - k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 37}]
Formula
G.f.: 1/(1 - Sum_{k>=1} (sigma(k) - k)*x^k).
G.f.: 1/(1 - Sum_{k>=1} (k - phi(k))*x^k/(1 - x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A001065(k)*a(n-k).
Comments