cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340992 a(n) is the (2n)-th term of the n-fold self-convolution of the number of divisors function tau.

Original entry on oeis.org

1, 2, 8, 41, 216, 1172, 6491, 36430, 206472, 1179104, 6774048, 39107400, 226683903, 1318427762, 7690414740, 44970645116, 263545466456, 1547445069318, 9101515979306, 53613206171619, 316243949777696, 1867702439169958, 11042787840419398, 65357054283015120
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1,
          `if`(k=1, numtheory[tau](n+1), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[0, n]], With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n - j, k - q], {j, 0, n}]]]];
    a[n_] := T[2n, n];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz in A320019 *)

Formula

a(n) = [x^(2n)] (Sum_{j>=1} tau(j)*x^j)^n.
a(n) = A320019(2n,n).

A375002 a(n) = Sum_{i+j+k+m=n, i,j,k,m >= 1} tau(i) * tau(j) * tau(k) * tau(m).

Original entry on oeis.org

0, 0, 0, 1, 8, 32, 92, 216, 440, 814, 1392, 2244, 3452, 5096, 7292, 10129, 13760, 18284, 23868, 30662, 38820, 48556, 59948, 73424, 88796, 106886, 127052, 150732, 176560, 206920, 239344, 277616, 317516, 365034, 413508, 471637, 529712, 600076, 668708, 753070, 833408
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2024

Keywords

Comments

4-fold convolution of tau (A000005).

Crossrefs

Column k=4 of A320019.

Programs

  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^k/(1-x^k))^4))

Formula

G.f.: ( Sum_{k>=1} x^k/(1 - x^k) )^4.
a(n) = Sum_{i=1..n-3} A055507(i)*A055507(n-2-i). - Chai Wah Wu, Jul 27 2024
Showing 1-2 of 2 results.