A326608
Numbers m such that m | A000385(m-1) = Sum_{k=1..m-1} sigma(k) * sigma(m-k).
Original entry on oeis.org
1, 3, 40, 84, 124, 318, 496, 672, 732, 790, 1320, 1488, 3154, 4464, 5271, 8128, 9156, 9888, 10880, 13392, 14760, 16392, 17019, 22366, 24384, 39424, 57240, 67488, 68237, 73276, 93825, 95728, 106428, 115330, 128982, 138176, 143256, 143780, 144210, 154432, 156360
Offset: 1
3 is in the sequence since 3 is a divisor for A000385(3-1) = 6.
-
aQ[n_] := Divisible[5 * DivisorSigma[3, n] - (6n - 1) * DivisorSigma[1, n], 12n]; Select[Range[2*10^5], aQ]
A024916
a(n) = Sum_{k=1..n} k*floor(n/k); also Sum_{k=1..n} sigma(k) where sigma(n) = sum of divisors of n (A000203).
Original entry on oeis.org
1, 4, 8, 15, 21, 33, 41, 56, 69, 87, 99, 127, 141, 165, 189, 220, 238, 277, 297, 339, 371, 407, 431, 491, 522, 564, 604, 660, 690, 762, 794, 857, 905, 959, 1007, 1098, 1136, 1196, 1252, 1342, 1384, 1480, 1524, 1608, 1686, 1758, 1806, 1930, 1987, 2080, 2152
Offset: 1
From _Omar E. Pol_, Aug 20 2021: (Start)
For n = 6 the sum of all divisors of the first six positive integers is [1] + [1 + 2] + [1 + 3] + [1 + 2 + 4] + [1 + 5] + [1 + 2 + 3 + 6] = 1 + 3 + 4 + 7 + 6 + 12 = 33, so a(6) = 33.
On the other hand the area under the Dyck path of the 6th diagram as shown below is equal to 33, so a(6) = 33.
Illustration of initial terms: _ _ _ _
_ _ _ | |_
_ _ _ | | | |_
_ _ | |_ | |_ _ | |
_ _ | |_ | | | | | |
_ | | | | | | | | | |
|_| |_ _| |_ _ _| |_ _ _ _| |_ _ _ _ _| |_ _ _ _ _ _|
.
1 4 8 15 21 33 (End)
- Hardy and Wright, "An introduction to the theory of numbers", Oxford University Press, fifth edition, p. 266.
- Daniel Mondot, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Vaclav Kotesovec, Plot of (a(n) - Pi^2*n^2/12) / (n*log(n)^(2/3)) for n = 2..100000.
- P. L. Patodia (pannalal(AT)usa.net), PARI program for A072692 and A024916.
- Peter Polm, C# program for A024916.
- A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 44, Issue 12, page 607, 1964.
Cf.
A056550,
A104471(2*n-1, n),
A123229,
A128489,
A000217,
A134867,
A072692,
A158905,
A237593,
A245092,
A006218,
A222548,
A092406,
A160664.
-
a024916 n = sum $ map (\k -> k * div n k) [1..n]
-- Reinhard Zumkeller, Apr 20 2015
-
[(&+[DivisorSigma(1, k): k in [1..n]]): n in [1..60]]; // G. C. Greubel, Mar 15 2019
-
A024916 := proc(n)
add(numtheory[sigma](k),k=0..n) ;
end proc: # Zerinvary Lajos, Jan 11 2009
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 0,
numtheory[sigma](n)+a(n-1))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Sep 12 2019
-
Table[Plus @@ Flatten[Divisors[Range[n]]], {n, 50}] (* Alonso del Arte, Mar 06 2006 *)
Table[Sum[n - Mod[n, m], {m, n}], {n, 50}] (* Roger L. Bagula and Gary W. Adamson, Oct 06 2006 *)
a[n_] := Sum[DivisorSigma[1, k], {k, n}]; Table[a[n], {n, 51}] (* Jean-François Alcover, Dec 16 2011 *)
Accumulate[DivisorSigma[1,Range[60]]] (* Harvey P. Dale, Mar 13 2014 *)
-
A024916(n)=sum(k=1,n,n\k*k) \\ M. F. Hasler, Nov 22 2007
-
A024916(z) = { my(s,u,d,n,a,p); s = z*z; u = sqrtint(z); p = 2; for(d=1, u, n = z\d - z\(d+1); if(n<=1, p=d; break(), a = z%d; s -= (2*a+(n-1)*d)*n/2); ); u = z\p; for(d=2, u, s -= z%d); return(s); } \\ See the link for a nicely formatted version. - P. L. Patodia (pannalal(AT)usa.net), Jan 11 2008
-
A024916(n)={my(s=0,d=1,q=n);while(dPeter Polm, Aug 18 2014
-
A024916(n)={ my(s=n^2, r=sqrtint(n), nd=n, D); for(d=1, r, (1>=D=nd-nd=n\(d+1)) && (r=d-1) && break; s -= n%d*D+(D-1)*D\2*d); s - sum(d=2, n\(r+1), n%d)} \\ Slightly optimized version of Patodia's code. - M. F. Hasler, Apr 18 2015
(C#) See Polm link.
-
def A024916(n): return sum(k*(n//k) for k in range(1,n+1)) # Chai Wah Wu, Dec 17 2021
-
from math import isqrt
def A024916(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1 # Chai Wah Wu, Oct 21 2023
-
[sum(sigma(k) for k in (1..n)) for n in (1..60)] # G. C. Greubel, Mar 15 2019
A055507
a(n) = Sum_{k=1..n} d(k)*d(n+1-k), where d(k) is number of positive divisors of k.
Original entry on oeis.org
1, 4, 8, 14, 20, 28, 37, 44, 58, 64, 80, 86, 108, 108, 136, 134, 169, 160, 198, 192, 236, 216, 276, 246, 310, 288, 348, 310, 400, 344, 433, 396, 474, 408, 544, 450, 564, 512, 614, 522, 688, 560, 716, 638, 756, 636, 860, 676, 859, 772, 926, 758, 1016, 804, 1032
Offset: 1
a(4) = d(1)*d(4) + d(2)*d(3) + d(3)*d(2) + d(4)*d(1) = 1*3 +2*2 +2*2 +3*1 = 14.
3 = 1*1+2*1 in 4 ways, so a(2)=4; 4 = 1*1+1*3 (4 ways) = 2*1+2*1 (4 ways), so a(3)=8; 5 = 4*1+1*1 (4 ways) = 2*2+1*1 (2 ways) + 3*1+2*1 (8 ways), so a(4) = 14. - _N. J. A. Sloane_, Jul 07 2012
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- George E. Andrews, Stacked lattice boxes, Ann. Comb. 3 (1999), 115-130. See D_{0,0}.
- A. E. Ingham, Some asymptotic formulae in the theory of numbers, Journal of the London Mathematical Society, Vol. s1-2, No. 3 (1927), pp. 202-208.
- Yoichi Motohashi, The binary additive divisor problem, Annales scientifiques de l'École Normale Supérieure, Sér. 4, 27 no. 5 (1994), p. 529-572.
- E. C. Titchmarsh, Some problems in the analytic theory of numbers, The Quarterly Journal of Mathematics 1 (1942): 129-152.
-
with(numtheory); A055507:=n->add(tau(j)*tau(n+1-j),j=1..n);
-
Table[Sum[DivisorSigma[0, k]*DivisorSigma[0, n + 1 - k], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 08 2022 *)
-
a(n)=sum(k=1,n,numdiv(k)*numdiv(n+1-k)) \\ Charles R Greathouse IV, Oct 17 2012
-
from sympy import divisor_count
def A055507(n): return (sum(divisor_count(i+1)*divisor_count(n-i) for i in range(n>>1))<<1)+(divisor_count(n+1>>1)**2 if n&1 else 0) # Chai Wah Wu, Jul 26 2024
A340793
Sequence whose partial sums give A000203.
Original entry on oeis.org
1, 2, 1, 3, -1, 6, -4, 7, -2, 5, -6, 16, -14, 10, 0, 7, -13, 21, -19, 22, -10, 4, -12, 36, -29, 11, -2, 16, -26, 42, -40, 31, -15, 6, -6, 43, -53, 22, -4, 34, -48, 54, -52, 40, -6, -6, -24, 76, -67, 36, -21, 26, -44, 66, -48, 48, -40, 10, -30, 108, -106, 34, 8
Offset: 1
Cf.
A000027,
A000041,
A000070,
A000217,
A000385,
A000441,
A002088,
A002961,
A014153,
A024916,
A036469,
A046092,
A053223,
A053224,
A053225,
A053226,
A053227,
A066186,
A086733,
A091360,
A138879,
A143128,
A175254,
A182738,
A237593,
A244050,
A245092,
A276432,
A277029,
A336811.
-
a:= n-> (s-> s(n)-s(n-1))(numtheory[sigma]):
seq(a(n), n=1..77); # Alois P. Heinz, Jan 21 2021
-
Join[{1}, Differences @ Table[DivisorSigma[1, n], {n, 1, 100}]] (* Amiram Eldar, Jan 21 2021 *)
-
a(n) = if (n==1, 1, sigma(n)-sigma(n-1)); \\ Michel Marcus, Jan 22 2021
A319083
Coefficients of polynomials related to the D'Arcais polynomials and Dedekind's eta(q) function, triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 7, 17, 9, 1, 0, 6, 38, 39, 12, 1, 0, 12, 70, 120, 70, 15, 1, 0, 8, 116, 300, 280, 110, 18, 1, 0, 15, 185, 645, 885, 545, 159, 21, 1, 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1, 0, 18, 384, 2262, 5586, 6713, 4281, 1498, 284, 27, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 3, 1;
[3] 0, 4, 6, 1;
[4] 0, 7, 17, 9, 1;
[5] 0, 6, 38, 39, 12, 1;
[6] 0, 12, 70, 120, 70, 15, 1;
[7] 0, 8, 116, 300, 280, 110, 18, 1;
[8] 0, 15, 185, 645, 885, 545, 159, 21, 1;
[9] 0, 13, 258, 1261, 2364, 2095, 942, 217, 24, 1;
-
P := proc(n, x) option remember; if n = 0 then 1 else
x*add(numtheory:-sigma(n-k)*P(k,x), k=0..n-1) fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k=0..n):
seq(Trow(n), n=0..9);
# second Maple program:
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Feb 01 2021
# Uses function PMatrix from A357368.
PMatrix(10, NumberTheory:-sigma); # Peter Luschny, Oct 19 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, DivisorSigma[1, n]],
With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n-j, k-q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)
A000441
a(n) = Sum_{k=1..n-1} k*sigma(k)*sigma(n-k).
Original entry on oeis.org
0, 1, 9, 34, 95, 210, 406, 740, 1161, 1920, 2695, 4116, 5369, 7868, 9690, 13640, 16116, 22419, 25365, 34160, 38640, 50622, 55154, 73320, 77225, 100100, 107730, 135576, 141085, 182340, 184760, 233616, 243408, 297738, 301420, 385110, 377511, 467210, 478842
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.
-
S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1);
f:=e->[seq(S(n,e),n=1..30)];f(1); # N. J. A. Sloane, Jul 03 2015
-
a[n_] := Sum[k*DivisorSigma[1, k]*DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 40] (* Jean-François Alcover, Feb 08 2016 *)
-
a(n) = sum(k=1, n-1, k*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
-
a(n) = my(f = factor(n)); ((n - 6*n^2) * sigma(f) + 5*n * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025
-
from sympy import divisor_sigma
def A000441(n): return (n*(1-6*n)*divisor_sigma(n)+5*n*divisor_sigma(n,3))//24 # Chai Wah Wu, Jul 25 2024
A000477
a(n) = Sum_{k=1..n-1} k^2*sigma(k)*sigma(n-k).
Original entry on oeis.org
0, 1, 15, 76, 275, 720, 1666, 3440, 6129, 11250, 17545, 28896, 41405, 65072, 85950, 128960, 162996, 238545, 286995, 404600, 482160, 662112, 756470, 1042560, 1150625, 1549730, 1732590, 2257920, 2443105, 3250800, 3421160, 4452096, 4791600, 6039522, 6296500
Offset: 1
G.f. = x^2 + 15*x^3 + 76*x^4 + 275*x^5 + 720*x^6 + 1666*x^7 + 3440*x^8 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.
-
with(numtheory): S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(2); # N. J. A. Sloane, Jul 03 2015
-
a[n_] := Sum[k^2 DivisorSigma[1, k] DivisorSigma[1, n-k], {k, 1, n-1}]; Array[a, 35] (* Jean-François Alcover, Feb 08 2016 *)
-
a(n) = sum(k=1, n-1, k^2*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
-
a(n) = my(f = factor(n)); ((n^2 - 4*n^3) * sigma(f) + 3*n^2 * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025
A000499
a(n) = Sum_{k=1..n-1} k^3*sigma(k)*sigma(n-k).
Original entry on oeis.org
0, 1, 27, 184, 875, 2700, 7546, 17600, 35721, 72750, 126445, 223776, 353717, 595448, 843750, 1349120, 1827636, 2808837, 3600975, 5306000, 6667920, 9599172, 11509982, 16416000, 19015625, 26605670, 30902310, 41686848, 46948825, 64233000, 70306760, 94089216
Offset: 1
G.f. = x^2 + 27*x^3 + 184*x^4 + 875*x^5 + 2700*x^6 + 7546*x^7 + 17600*x^8 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.
-
S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(3);
-
a[n_] := Sum[k^3*DivisorSigma[1, k]*DivisorSigma[1, n - k], {k, 1, n - 1}]; Array[a, 32] (* Jean-François Alcover, Feb 09 2016 *)
-
a(n) = sum(k=1, n-1, k^3*sigma(k)*sigma(n-k)); \\ Michel Marcus, Feb 02 2014
-
a(n) = my(f = factor(n)); ((n^3 - 3*n^4) * sigma(f) + 2*n^3 * sigma(f, 3)) / 24; \\ Amiram Eldar, Jan 04 2025
A259692
a(n) = Sum_{k=1..n-1} k^4*sigma(k)*sigma(n-k).
Original entry on oeis.org
0, 1, 51, 472, 2963, 10764, 36538, 95936, 222561, 502638, 974245, 1850784, 3234269, 5826680, 8857926, 15093248, 21945012, 35369541, 48358119, 74448464, 98697648, 148971972, 187495262, 276509952, 336495665, 488970662, 590163894, 823791168, 966018241, 1358404776
Offset: 1
-
S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(4);
-
a[n_]:=Sum[k^4*DivisorSigma[1,k]*DivisorSigma[1,n-k],{k,1,n-1}]; Table[a[n],{n,1,30}] (* Robert P. P. McKone, Sep 09 2023 *)
-
a(n) = sum(k=1, n-1, k^4*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015
A259693
a(n) = Sum_{k=1..n-1} k^5*sigma(k)*sigma(n-k).
Original entry on oeis.org
0, 1, 99, 1264, 10475, 44820, 185626, 546560, 1454841, 3640950, 7868245, 16042176, 31040789, 59796968, 97525350, 177090560, 276689076, 467100189, 681356055, 1096023200, 1533162960, 2426544252, 3205401854, 4885539840, 6250705625, 9431254430, 11831779350
Offset: 1
-
S:=(n,e)->add(k^e*sigma(k)*sigma(n-k),k=1..n-1); f:=e->[seq(S(n,e),n=1..30)]; f(5);
-
S[n_, e_] := Sum[k^e * DivisorSigma[1, k] * DivisorSigma[1, n - k], {k, 1, n - 1}]
f[e_] := Table[S[n, e], {n, 1, 27}];f[5] (* James C. McMahon, Dec 19 2023 *)
-
a(n) = sum(k=1, n-1, k^5*sigma(k)*sigma(n-k)) \\ Colin Barker, Jul 16 2015
Showing 1-10 of 30 results.
Comments