cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 228 results. Next

A262611 Triangle read by rows in which row n lists the widths of the symmetric representation of A024916(n): the sum of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2, 3, 3, 3, 3, 3, 2, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 4, 5, 4, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 5, 6, 7, 6, 5, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7, 6, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Here T(n,k) is defined to be the "k-th width" of the symmetric representation of A024916(n), with n>=1 and 1<=k<=2n-1.
If both A249351 and this sequence are written as isosceles triangles then the partial sums of the columns of A249351 give the columns of this isosceles triangle (see the second triangle in Example section).
For the definition of the k-th width of the symmetric representation of sigma(n) see A249351.
Note that for the geometric representation of the n-th row of the triangle we need the x-axis, the y-axis, and only a Dyck path which is given by the elements of the n-th row of the triangle A237593.
Row n has length 2*n-1.
Row sums give A024916.
The middle diagonal is A240542.

Examples

			Triangle begins:
1;
1,2,1;
1,2,2,2,1;
1,2,3,3,3,2,1;
1,2,3,3,3,3,3,2,1;
1,2,3,4,4,5,4,4,3,2,1;
1,2,3,4,4,4,5,4,4,4,3,2,1;
1,2,3,4,5,5,5,6,5,5,5,4,3,2,1;
1,2,3,4,5,5,5,6,7,6,5,5,5,4,3,2,1;
1,2,3,4,5,6,6,6,7,7,7,6,6,6,5,4,3,2,1;
1,2,3,4,5,6,6,6,6,7,7,7,6,6,6,6,5,4,3,2,1;
1,2,3,4,5,6,7,7,7,8,9,9,9,8,7,7,7,6,5,4,3,2,1;
...
--------------------------------------------------------------------------
.        Written as an isosceles triangle
.              the sequence begins:               Diagram for n = 1..12
--------------------------------------------------------------------------
.                                                _ _ _ _ _ _ _ _ _ _ _ _
.                      1;                       |_| | | | | | | | | | | |
.                    1,2,1;                     |_ _|_| | | | | | | | | |
.                  1,2,2,2,1;                   |_ _|  _|_| | | | | | | |
.                1,2,3,3,3,2,1;                 |_ _ _|    _|_| | | | | |
.              1,2,3,3,3,3,3,2,1;               |_ _ _|  _|  _ _|_| | | |
.            1,2,3,4,4,5,4,4,3,2,1;             |_ _ _ _|  _| |  _ _|_| |
.          1,2,3,4,4,4,5,4,4,4,3,2,1;           |_ _ _ _| |_ _|_|    _ _|
.        1,2,3,4,5,5,5,6,5,5,5,4,3,2,1;         |_ _ _ _ _|  _|     |
.      1,2,3,4,5,5,5,6,7,6,5,5,5,4,3,2,1;       |_ _ _ _ _| |      _|
.    1,2,3,4,5,6,6,6,7,7,7,6,6,6,5,4,3,2,1;     |_ _ _ _ _ _|  _ _|
.  1,2,3,4,5,6,6,6,6,7,7,7,6,6,6,6,5,4,3,2,1;   |_ _ _ _ _ _| |
.1,2,3,4,5,6,7,7,7,8,9,9,9,8,7,7,7,6,5,4,3,2,1; |_ _ _ _ _ _ _|
...
For n = 3 the symmetric representation of A024916(3) = 8 in the 4th quadrant looks like this:
.
.    Polygon         Cells
.     _ _ _          _ _ _
.    |     |        |_|_|_|
.    |    _|        |_|_|_|
.    |_ _|          |_|_|
.
There are eight cells. The representation of the widths looks like this:
.
.     \ \ \
.     \ \ \
.     \ \    1
.          2 2
.        1 2
.
So the third row of the triangle is [1, 2, 2, 2, 1].
		

Crossrefs

A245099 Triangle read by rows: T(n,k) = A024916(k)*A002865(n-k).

Original entry on oeis.org

1, 0, 4, 1, 0, 8, 1, 4, 0, 15, 2, 4, 8, 0, 21, 2, 8, 8, 15, 0, 33, 4, 8, 16, 15, 21, 0, 41, 4, 16, 16, 30, 21, 33, 0, 56, 7, 16, 32, 30, 42, 33, 41, 0, 69, 8, 28, 32, 60, 42, 66, 41, 56, 0, 87, 12, 32, 56, 60, 84, 66, 82, 56, 69, 0, 99, 14, 48, 64
Offset: 1

Views

Author

Omar E. Pol, Jul 13 2014

Keywords

Comments

Row sums give A066186.
Column 1 is A002865.
Leading diagonal is A024916.
Since A024916(k) has a symmetric representation then both T(n,k) and the partial sums of row n can be represented by symmetric polycubes - for more information see A237593 and A237270. For another version see A221529.

Examples

			Triangle begins:
1;
0,   4;
1,   0,  8;
1,   4,  0, 15;
2,   4,  8,  0, 21;
2,   8,  8, 15,  0, 33;
4,   8, 16, 15, 21,  0, 41;
4,  16, 16, 30, 21, 33,  0, 56;
7,  16, 32, 30, 42, 33, 41,  0, 69;
8,  28, 32, 60, 42, 66, 41, 56,  0, 87;
12, 32, 56, 60, 84, 66, 82, 56, 69,  0, 99;
...
For n = 6:
-------------------------
k   A024916        T(6,k)
-------------------------
1      1  *  2   =    2
2      4  *  2   =    8
3      8  *  1   =    8
4     15  *  1   =   15
5     21  *  0   =    0
6     33  *  1   =   33
.         A002865
-------------------------
So row 6 is [2, 8, 8, 15, 0, 33] and the sum of row 6 is 2+8+8+15+0+33 = 66 equaling A066186(6) = 6*A000041(6) = 6*11 = 66.
		

Crossrefs

A326617 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=A024916(k), read by columns.

Original entry on oeis.org

1, 1, 2, 2, 1, 5, 9, 9, 10, 9, 3, 13, 44, 96, 152, 155, 124, 140, 160, 113, 48, 16, 4, 42, 225, 680, 1350, 2180, 3751, 6050, 7420, 6870, 5555, 5330, 6300, 6475, 5025, 3000, 1250, 250, 150, 1098, 4155, 11730, 30300, 69042, 127364, 188568, 249690, 365160, 584733
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.

Examples

			T(3,2) = 2: 2a1b, 2b1a.
T(3,3) = 5: 3abc, 2ab1c, 2ac1b, 2bc1a, 111abc.
Triangle T(n,k) begins:
  1;
     1;
        2;
        2,  5;
        1,  9,  13;
            9,  44,   42;
           10,  96,  225,   150;
            9, 152,  680,  1098,    576;
            3, 155, 1350,  4155,   5201,   2266;
               124, 2180, 11730,  26642,  26904,   9966;
               140, 3751, 30300, 106281, 182000, 149832, 47466;
               ...
		

Crossrefs

Main diagonal gives A178682.
Row sums give A326648.
Column sums give A326650.
Cf. A000203, A024916, A326616 (this triangle read by rows), A326649, A326651.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), n=k..g(k)), k=0..6);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n - 1]] ;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = i j}, b[n - t, Min[n - t, i - 1], k]*Binomial[k, t]], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    Table[Table[T[n, k], {n, k, g[k]}], {k, 0, 6}] // Flatten (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)

Formula

Sum_{k=A185283(n)..n} k * T(n,k) = A326649(n).
Sum_{n=k..A024916(k)} n * T(n,k) = A326651(k).

A340423 Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.

Original entry on oeis.org

1, 4, 8, 1, 15, 4, 1, 21, 8, 4, 1, 1, 33, 15, 8, 4, 4, 1, 1, 41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1, 56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 87, 56, 41, 33, 33, 21, 21, 15, 15, 15, 15, 8, 8, 8, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 07 2021

Keywords

Comments

T(n,k) is the number of cubic cells (or cubes) in the k-th level starting from the base of the tower described in A221529 whose largest side of the base is equal to n (see example). - Omar E. Pol, Jan 08 2022

Examples

			Triangle begins:
   1;
   4;
   8,  1;
  15,  4,  1;
  21,  8,  4,  1,  1;
  33, 15,  8,  4,  4,  1,  1;
  41, 21, 15,  8,  8,  4,  4, 1, 1, 1, 1;
  56, 33, 21, 15, 15,  8,  8, 4, 4, 4, 4, 1, 1, 1, 1;
  69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 9 the length of row 9 is A000041(9-1) = 22.
From _Omar E. Pol_, Jan 08 2022: (Start)
For n = 9 the lateral view and top view of the tower described in A221529 look like as shown below:
                        _
    22        1        | |
    21        1        | |
    20        1        | |
    19        1        | |
    18        1        | |
    17        1        | |
    16        1        |_|_
    15        4        |   |
    14        4        |   |
    13        4        |   |
    12        4        |_ _|_
    11        8        |   | |
    10        8        |   | |
     9        8        |   | |
     8        8        |_ _|_|_
     7       15        |     | |
     6       15        |_ _ _| |_
     5       21        |     |   |
     4       21        |_ _ _|_ _|_
     3       33        |_ _ _ _| | |_
     2       41        |_ _ _ _|_|_ _|_ _
     1       69        |_ _ _ _ _|_ _|_ _|
.
   Level   Row 9         Lateral view
     k     T(9,k)        of the tower
.
                        _ _ _ _ _ _ _ _ _
                       |_| | | | | | |   |
                       |_ _|_| | | | |   |
                       |_ _|  _|_| | |   |
                       |_ _ _|    _|_|   |
                       |_ _ _|  _|    _ _|
                       |_ _ _ _|     |
                       |_ _ _ _|  _ _|
                       |         |
                       |_ _ _ _ _|
.
                           Top view
                         of the tower
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the tower, so T(9,1) = 69.
For n = 9 and k = 22 there is only one cubic cell in the level 22 (the top) of the tower, so T(9,22) = 1.
The volume of the tower (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000041 hence it's equal to A066186(9) = 270, equaling the sum of the 9th row of triangle. (End)
		

Crossrefs

Row sums give A066186.
Row lengths give A000041.
The length of the m-th block in row n is A187219(m), m >= 1.
Cf. A350637 (analog for the stepped pyramid described in A245092).

Programs

  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; } \\ A336811
    g(n) = sum(k=1, n, n\k*k); \\ A024916
    row(n) = vector(f(n), k, g(T(n,k))); \\ Michel Marcus, Jan 22 2022

Formula

T(n,k) = A024916(A336811(n,k)).
T(n,k) = Sum_{j=1..n} A339278(j,k). - Omar E. Pol, Jan 08 2022

A340424 Triangle read by rows: T(n,k) = A024916(n-k+1)*A002865(k-1), 1 <= k <= n.

Original entry on oeis.org

1, 4, 0, 8, 0, 1, 15, 0, 4, 1, 21, 0, 8, 4, 2, 33, 0, 15, 8, 8, 2, 41, 0, 21, 15, 16, 8, 4, 56, 0, 33, 21, 30, 16, 16, 4, 69, 0, 41, 33, 42, 30, 32, 16, 7, 87, 0, 56, 41, 66, 42, 60, 32, 28, 8, 99, 0, 69, 56, 82, 66, 84, 60, 56, 32, 12, 127, 0, 87, 69, 112, 82, 132, 84, 105, 64, 48, 14
Offset: 1

Views

Author

Omar E. Pol, Jan 07 2021

Keywords

Comments

Conjecture: the sum of row n equals A066186(n), the sum of all parts of all partitions of n.

Examples

			Triangle begins:
   1;
   4,  0;
   8,  0,  1;
  15,  0,  4,  1;
  21,  0,  8,  4,  2;
  33,  0, 15,  8,  8,  2;
  41,  0, 21, 15, 16   8,  4;
  56,  0, 33, 21, 30, 16, 16,  4;
  69,  0, 41, 33, 42, 30, 32, 16,  7;
  87,  0, 56, 41, 66, 42, 60, 32, 28,  8;
  99,  0, 69, 56, 82, 66, 84, 60, 56, 32, 12;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k   A002865         T(6,k)
--------------------------
1      1   *  33   =  33
2      0   *  21   =   0
3      1   *  15   =  15
4      1   *   8   =   8
5      2   *   4   =   8
6      2   *   1   =   2
.           A024916
--------------------------
The sum of row 6 is 33 + 0 + 15 + 8 + 8 + 2 = 66, equaling A066186(6) = 66.
		

Crossrefs

Mirror of A245099.
Columns 1, 3 and 4 are A024916 (partial sums of A000203).
Column 2 gives A000004.
Columns 5 and 6 give A327329.
Columns 7 and 8 give A243980.
Leading diagonal gives A002865.
Cf. A066186.

A340527 Triangle read by rows: T(n,k) = A024916(n-k+1)*A000041(k-1), 1 <= k <= n.

Original entry on oeis.org

1, 4, 1, 8, 4, 2, 15, 8, 8, 3, 21, 15, 16, 12, 5, 33, 21, 30, 24, 20, 7, 41, 33, 42, 45, 40, 28, 11, 56, 41, 66, 63, 75, 56, 44, 15, 69, 56, 82, 99, 105, 105, 88, 60, 22, 87, 69, 112, 123, 165, 147, 165, 120, 88, 30, 99, 87, 138, 168, 205, 231, 231, 225, 176, 120, 42, 127, 99, 174
Offset: 1

Views

Author

Omar E. Pol, Jan 10 2021

Keywords

Comments

Conjecture 1: T(n,k) is the sum of divisors of the terms that are in the k-th blocks of the first n rows of triangle A176206.
Conjecture 2: the sum of row n equals A182738(n), the sum of all parts of all partitions of all positive integers <= n.
Conjecture 3: T(n,k) is also the volume (or number of cubes) of the k-th block of a symmetric tower in which the terraces are the symmetric representation of sigma (n..1) starting from the base respectively (cf. A237270, A237593), hence the total area of the terraces is A024916(n), the same as the area of the base.
The levels of the terraces starting from the base are the first n terms of A000070, that is A000070(0)..A000070(n-1). Hence the differences between levels give the partition numbers A000041, that is A000041(0)..A000041(n-1).
This symmetric tower has the property that its volume (or total number of cubes) equals A182738(n), the sum of all parts of all partitions of all positive integers <= n.
For another symmetric tower of the same family and whose volume equals A066186(n) see A339106 and A221529.
The above three conjectures are connected due to the correspondence between divisors and partitions (cf. A336811).

Examples

			Triangle begins:
   1;
   4,   1;
   8,   4,   2;
  15,   8,   8,   3;
  21,  15,  16,  12,   5;
  33,  21,  30,  24,  20,   7;
  41,  33,  42,  45,  40,  28,  11;
  56,  41,  66,  63,  75,  56,  44,  15;
  69,  56,  82,  99, 105, 105,  88,  60,  22;
  87,  69, 112, 123, 165, 147, 165, 120,  88,  30;
  99,  87, 138, 168, 205, 231, 231, 225, 176, 120,  42;
...
For n = 6 the calculation of every term of row 6 is as follows:
--------------------------
k   A000041         T(6,k)
1      1  *  33   =   33
2      1  *  21   =   21
3      2  *  15   =   30
4      3  *   8   =   24
5      5  *   4   =   20
6      7  *   1   =    7
.          A024916
--------------------------
The sum of row 6 is 33 + 21 + 30 + 24 + 20 + 7 = 135, equaling A182738(6).
		

Crossrefs

Columns 1 and 2 give A024916.
Column 3 gives A327329.
Leading diagonal gives A000041.
Row sums give A182738.

A340531 Irregular triangle read by rows T(n,k), (n >= 1, k >= 1), in which row n has length is A000070(n-1) and every column k is A024916, the sum of all divisors of all numbers <= n.

Original entry on oeis.org

1, 4, 1, 8, 4, 1, 1, 15, 8, 4, 4, 1, 1, 1, 21, 15, 8, 8, 4, 4, 4, 1, 1, 1, 1, 1, 33, 21, 15, 15, 8, 8, 8, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 41, 33, 21, 21, 15, 15, 15, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 56, 41, 33, 33, 21, 21, 21, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Omar E. Pol, Jan 10 2021

Keywords

Comments

Consider a symmetric tower (a polycube) in which the terraces are the symmetric representation of sigma (n..1) respectively starting from the base (cf. A237270, A237593).
The levels of the terraces starting from the base are the first n terms of A000070, that is A000070(0)..A000070(n-1), hence the differences between two successive levels give the partition numbers A000041, that is A000041(0)..A000041(n-1).
T(n,k) is the volume (the number of cells) in the k-th level starting from the base.
This polycube has the property that the volume (the total number of cells) equals A182738(n), the sum of all parts of all partitions of all positive integers <= n.
A dissection of the symmetric tower is a three-dimensional spiral whose top view is described in A239660.
Other triangles related to the volume of this polycube are A340527 and A340579.
The symmetric tower is a member of the family of the stepped pyramid described in A245092.
For another symmetric tower of the same family and whose volume equals A066186(n) see A340423.
The sum of row n of triangle equals A182738(n). That property is due to the correspondence between divisors and parts. For more information see A336811.

Examples

			Triangle begins:
   1;
   4,  1;
   8,  4,  1,  1;
  15,  8,  4,  4, 1, 1, 1;
  21, 15,  8,  8, 4, 4, 4, 1, 1, 1, 1, 1;
  33, 21, 15, 15, 8, 8, 8, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 5 the length of row 5 is A000070(4) = 12.
The sum of row 5 is 21 + 15 + 8 + 8 + 4 + 4 + 4 + 1 + 1 + 1 + 1 + 1 = 69, equaling A182738(5).
		

Crossrefs

Row sums give A182738.
Cf. A340527 (a regular version).
Members of the same family are: A176206, A337209, A339258, A340530.

Formula

a(m) = A024916(A176206(m)), assuming A176206 has offset 1.
T(n,k) = A024916(A176206(n,k)), assuming A176206 has offset 1.

A143238 a(n) = A000203(n) * A024916(n).

Original entry on oeis.org

1, 12, 32, 105, 126, 396, 328, 840, 897, 1566, 1188, 3556, 1974, 3960, 4536, 6820, 4284, 10803, 5940, 14238, 11872, 14652, 10344, 29460, 16182, 23688, 24160, 36960, 20700, 54864, 25408, 53991, 43440, 51786, 48336, 99918, 43168, 71760, 70112, 120780, 58128, 142080
Offset: 1

Views

Author

Gary W. Adamson, Aug 01 2008

Keywords

Examples

			a(4) = 105 = A000203(4) * A024916(4) = 7 * 15.
a(4) = 105 = sum of row 4 terms of triangle A143237: (7, + 21, + 28 + 49).
		

Crossrefs

Programs

  • Magma
    A143238:= func< n | DivisorSigma(1,n)*(&+[k*Floor(n/k): k in [1..n]]) >;
    [A143238(n): n in [1..100]]; // G. C. Greubel, Sep 12 2024
    
  • Mathematica
    sigma = Table[DivisorSigma[1, n], {n, 1, 50}]; sigma * Accumulate[sigma] (* Amiram Eldar, Feb 26 2020 *)
  • Python
    from math import isqrt
    from sympy import divisor_sigma
    def A143238(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)*divisor_sigma(n) # Chai Wah Wu, Oct 23 2023
    
  • SageMath
    def A143238(n): return sigma(n,1)*sum(k*int(n//k) for k in range(1,n+1))
    [A143238(n) for n in range(1,101)] # G. C. Greubel, Sep 12 2024

Formula

a(n) = A000203(n) * A024916(n).
a(n) = Sum_{k=1..n} A143237(n, k).

Extensions

More terms from Amiram Eldar, Feb 26 2020

A358209 a(1) = 1; a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that shares a factor with A024916(n-1) = Sum_{k=1..n-1} sigma(k).

Original entry on oeis.org

1, 2, 4, 6, 3, 7, 9, 41, 8, 12, 15, 11, 127, 18, 5, 14, 10, 16, 277, 21, 24, 28, 22, 431, 491, 20, 26, 30, 25, 23, 27, 32, 857, 35, 42, 19, 33, 34, 13, 36, 38, 40, 37, 39, 44, 45, 46, 43, 48, 1987, 50, 52, 51, 54, 56, 57, 58, 60, 49, 62, 55, 64, 61, 63, 82, 66, 3631, 69, 17, 72, 65, 70, 68, 74
Offset: 1

Views

Author

Scott R. Shannon, Nov 04 2022

Keywords

Comments

The majority of terms are concentrated just below the line a(n) = n. However, some terms are much larger because the sum of the divisors of all previous terms is a prime number. In the first 5000 terms there are thirteen fixed points: 32, 52, 54, ..., 1331, 2082, 2097.
Conjecture: the sequence is a permutation of the positive integers.

Examples

			a(5) = 3 as sigma(1) + sigma(2) + sigma(3) + sigma(4) = A024916(4) = 15, and 3 is the smallest unused number that shares a factor with 15.
		

Crossrefs

A098199 Continued fraction expansion for Pi^4/36, the limiting value of A024916(n)/A002088(n).

Original entry on oeis.org

2, 1, 2, 2, 1, 1, 46, 459, 2, 3, 1, 2, 2, 1, 1, 8, 18, 1, 1, 1, 1, 6, 5, 6, 14, 1, 2, 1, 1, 140, 1, 2, 1, 1, 2, 1, 9, 16, 1, 2, 1, 1, 1, 15, 1, 3, 55, 1, 1, 12, 1, 1, 5, 4, 6, 13, 2, 2, 7, 2, 32, 1, 1, 6, 1, 1, 54, 1, 1, 1, 21, 1, 2, 1, 3, 4, 5, 15, 1, 6, 1, 2, 5, 1, 1, 7, 1, 834, 2, 1, 4, 8, 3, 2, 3, 1, 5
Offset: 0

Views

Author

Labos Elemer, Sep 21 2004

Keywords

Crossrefs

Cf. A024916, A002088, A098198 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[(Pi^4)/36, 256]
  • PARI
    contfrac(Pi^4/36) \\ Amiram Eldar, Mar 08 2025

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024
Showing 1-10 of 228 results. Next