A178682
The number of functions f:{1,2,...,n}->{1,2,...,n} such that the number of elements that are mapped to m is divisible by m.
Original entry on oeis.org
1, 1, 2, 5, 13, 42, 150, 576, 2266, 9966, 47466, 237019, 1224703, 6429152, 35842344, 212946552, 1325810173, 8488092454, 55276544436, 362961569008, 2465240278980, 17538501945077, 130454679958312, 1002493810175093, 7838007702606372, 61789072382062638
Offset: 0
a(3) = 5 because there are 5 such functions: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (3,3,3).
G.f. = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 42*x^5 + 150*x^6 + 576*x^7 + ...
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&*[(&+[x^(k*j)/Factorial(k*j): k in [0..m]]): j in [1..m]]) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jan 26 2019
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 30 2015
-
Range[0,20]! CoefficientList[Series[Product[Sum[x^(j i)/(j i)!,{i,0,20}],{j,1,20}],{x,0,20}],x]
-
m=30; my(x='x+O('x^m)); Vec(serlaplace(prod(j=1, m, sum(k=0,m, x^(k*j)/(k*j)!)))) \\ G. C. Greubel, Jan 26 2019
-
m = 30; T = taylor(product(sum(x^(k*j)/factorial(k*j) for k in (0..m)) for j in (1..m)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jan 26 2019
A326616
Number T(n,k) of colored integer partitions of n using all colors of a k-set such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order; triangle T(n,k), n>=0, A185283(n)<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 2, 2, 5, 1, 9, 13, 9, 44, 42, 10, 96, 225, 150, 9, 152, 680, 1098, 576, 3, 155, 1350, 4155, 5201, 2266, 124, 2180, 11730, 26642, 26904, 9966, 140, 3751, 30300, 106281, 182000, 149832, 47466, 160, 6050, 69042, 348061, 896392, 1229760, 855240, 237019
Offset: 0
T(3,2) = 2: 2a1b, 2b1a.
T(3,3) = 5: 3abc, 2ab1c, 2ac1b, 2bc1a, 111abc
Triangle T(n,k) begins:
1;
1;
2;
2, 5;
1, 9, 13;
9, 44, 42;
10, 96, 225, 150;
9, 152, 680, 1098, 576;
3, 155, 1350, 4155, 5201, 2266;
124, 2180, 11730, 26642, 26904, 9966;
140, 3751, 30300, 106281, 182000, 149832, 47466;
...
-
g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end:
h:= proc(n) option remember; local k; for k from
`if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i)))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=h(n)..n), n=0..12);
-
g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n - 1]];
h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[n - t, Min[n - t, i - 1], k]*Binomial[k, t]][i*j], {j, 0, n/i}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, h[n], n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 27 2021, after Alois P. Heinz *)
A326648
Number of colored integer partitions of n using all colors of an initial interval of the color palette such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order.
Original entry on oeis.org
1, 1, 2, 7, 23, 95, 481, 2515, 13130, 77546, 519770, 3641724, 25931163, 185418629, 1411248697, 11735504788, 103340890753, 931471895697, 8448978391755, 76541843977198, 715994685630321, 7110500945450780, 74757652968961770, 815423663501064107, 9012653697655462141
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end:
h:= proc(n) option remember; local k; for k from
`if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i)))
end:
a:= n-> add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=h(n)..n):
seq(a(n), n=0..25);
-
g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n-1]];
h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n-1]], True, k++, If[g[k] >= n, Return[k]]]];
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1 || k < h[n], 0, Sum[With[ {t = i j}, b[n-t, Min[n-t, i-1], k] Binomial[k, t]], {j, 0, n/i}]]];
a[n_] := Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {k, h[n], n}, {i, 0, k}];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
A326649
Total number of colors in all colored integer partitions of n using all colors of an initial interval of the color palette such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order.
Original entry on oeis.org
0, 1, 4, 19, 81, 413, 2439, 14655, 86844, 573196, 4224230, 32280154, 249433713, 1925416359, 15732592327, 139542345546, 1304524118159, 12445507282579, 119198874300879, 1137647406084952, 11183828252431175, 116368970786569604, 1278400213028604214
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end:
h:= proc(n) option remember; local k; for k from
`if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i)))
end:
a:= n-> add(k*add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=h(n)..n):
seq(a(n), n=0..25);
-
g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n - 1]];
h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0, h[n - 1]], True, k++, If[g[k] >= n, Return [k]]]];
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1 || kJean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
A326650
Number of colored integer partitions using all colors of an n-set such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order.
Original entry on oeis.org
1, 1, 5, 45, 1065, 61753, 9705069, 4394516773, 5931440509137, 24154079629381105, 300121111037478706517, 11510717148660156841731485, 1369013994385630011763634779641, 505666129597215709912984823873504809, 582167751341290615329122568805084839847101
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i)))
end:
a:= k-> add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), n=k..g(k)):
seq(a(n), n=0..15);
-
g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n - 1]];
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[With[{t = i j}, b[n - t, Min[n - t, i - 1], k] Binomial[k, t]], {j, 0, n/i}]]];
a[k_] := Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {n, k, g[k]}, {i, 0, k}];
a /@ Range[0, 15] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
Original entry on oeis.org
0, 1, 14, 243, 9692, 865445, 196868202, 122831606807, 219073289264824, 1139077903664789577, 17597009238919048388550, 821444189426979675481201211, 116802449602563244067365434335892, 50816512870344533477388136382624158445
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i)))
end:
a:= k-> add(n*add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), n=k..g(k)):
seq(a(n), n=0..15);
-
g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n - 1]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = i*j}, b[n - t, Min[n - t, i - 1], k]*Binomial[k, t]], {j, 0, n/i}]]];
a[k_] := Sum[n*Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}], {n, k, g[k]}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 24 2022, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments