A057625
a(n) = n! * sum 1/k! where the sum is over all positive integers k that divide n.
Original entry on oeis.org
1, 3, 7, 37, 121, 1201, 5041, 62161, 423361, 5473441, 39916801, 818959681, 6227020801, 130784734081, 1536517382401, 32256486662401, 355687428096001, 10679532671808001, 121645100408832001, 3770998783116364801, 59616236292028416001, 1686001119824999577601
Offset: 1
a(4) = 4! (1 + 1/2! + 1/4!) = 24 (1 + 1/2 + 1/24) = 37.
A087906
a(n) = Sum_{d|n} (n-1)!/(d-1)!.
Original entry on oeis.org
1, 2, 3, 13, 25, 301, 721, 10921, 60481, 740881, 3628801, 106777441, 479001601, 12462690241, 134399865601, 2833553923201, 20922789888001, 892191453753601, 6402373705728001, 268633265290790401, 3652732042831872001, 102181898422712908801, 1124000727777607680001
Offset: 1
-
Array[n \[Function] DivisorSum[n, (n - 1)!/(# - 1)! &], 25] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
-
a(n)=sumdiv(n,d,(n-1)!/(d-1)!); \\ Joerg Arndt, May 21 2013
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
A058892
E.g.f.: exp(f(x)-1), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1-x^k).
Original entry on oeis.org
1, 1, 5, 31, 265, 2621, 31621, 426595, 6574961, 111673945, 2092318021, 42552808871, 937495160185, 22150499622421, 559765402811525, 15039597200385451, 428293292251548001, 12875707199330296625, 407547173842501629061
Offset: 0
-
nmax = 30; CoefficientList[Series[1/E*Exp[Product[1/(1 - x^k), {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!(* Vaclav Kotesovec, Aug 19 2015 *)
-
N=66; q='q+O('q^N);
f=exp( 1/prod(n=1,N, 1-q^n ) - 1 );
egf=serlaplace(f);
Vec(egf)
/* Joerg Arndt, Oct 06 2012 */
A008298
Triangle of D'Arcais numbers.
Original entry on oeis.org
1, 3, 1, 8, 9, 1, 42, 59, 18, 1, 144, 450, 215, 30, 1, 1440, 3394, 2475, 565, 45, 1, 5760, 30912, 28294, 9345, 1225, 63, 1, 75600, 293292, 340116, 147889, 27720, 2338, 84, 1, 524160, 3032208, 4335596, 2341332, 579369, 69552, 4074, 108, 1, 6531840, 36290736, 57773700, 38049920, 11744775, 1857513, 154350, 6630, 135, 1
Offset: 1
exp(Sum_{n>0} sigma(n)*u*x^n/n) = 1+u*x/1!+(3*u+u^2)*x^2/2!+(8*u+9*u^2+u^3)*x^3/3!+(42*u+59*u^2+18*u^3+u^4)*x^4/4!+...
Triangle starts:
1:
3, 1;
8, 9, 1;
42, 59, 18, 1;
144, 450, 215, 30, 1;
1440, 3394, 2475, 565, 45, 1;
5760, 30912, 28294, 9345, 1225, 63, 1;
75600, 293292, 340116, 147889, 27720, 2338, 84, 1;
...
T(4; u) = 4!*(binomial(u+3,4) + binomial(u+1,2)*binomial(u,1) + binomial(u+1,2) + binomial(u,1)^2 + binomial(u,1)) = 42*u+59*u^2+18*u^3+u^4.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
- F. D'Arcais, Développement en série, Intermédiaire Math., Vol. 20 (1913), pp. 233-234.
-
P := proc(n): if n=0 then 1 else P(n):= (1/n)*(add(x(n-k) * P(k), k=0..n-1)) fi; end: with(numtheory): x := proc(n): sigma(n) * x end: Q := proc(n): n!*P(n) end: T := proc(n, k): coeff(Q(n), x, k) end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, Jul 08 2016
-
t[0][u_] = 1; t[n_][u_] := t[n][u] = Sum[(n-1)!/(n-k)!*DivisorSigma[1, k]*u*t[n-k][u], {k, 1, n}]; row[n_] := CoefficientList[ t[n][u], u] // Rest; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 03 2012, after Vladeta Jovovic *)
-
row(n)={local(P(n)=if(n,sum(k=0,n-1,sigma(n-k)*x*P(k))/n,1)); Vecrev(P(n)*n!/x)} \\ T(n,k)=row(n)[k]. - M. F. Hasler, Jul 13 2016
-
a(n) = if(n<1, 0, (n-1)!*sigma(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
print(bell_matrix(lambda n: A038048(n+1), 9)) # Peter Luschny, Jan 19 2016
A274804
The exponential transform of sigma(n).
Original entry on oeis.org
1, 1, 4, 14, 69, 367, 2284, 15430, 115146, 924555, 7991892, 73547322, 718621516, 7410375897, 80405501540, 914492881330, 10873902417225, 134808633318271, 1738734267608613, 23282225008741565, 323082222240744379, 4638440974576329923, 68794595993688306903
Offset: 0
Some a(n) formulas, see A178867:
a(0) = 1
a(1) = x(1)
a(2) = x(1)^2 + x(2)
a(3) = x(1)^3 + 3*x(1)*x(2) + x(3)
a(4) = x(1)^4 + 6*x(1)^2*x(2) + 4*x(1)*x(3) + 3*x(2)^2 + x(4)
a(5) = x(1)^5 + 10*x(1)^3*x(2) + 10*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 5*x(1)*x(4) + 10*x(2)*x(3) + x(5)
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 0..531
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
Cf.
A177208,
A177209,
A006351,
A197505,
A144180,
A256180,
A033462,
A198046,
A134954,
A145460,
A188489,
A005432,
A029725,
A124213,
A002801.
-
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; if n=0 then 1 else add(binomial(n-1, j-1) * b(j) *a(n-j), j=1..n) fi: end: seq(a(n), n=0..nmax); # End first EXP program.
nmax:= 21: with(numtheory): b := proc(n): sigma(n) end: t1 := exp(add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=0..nmax); # End second EXP program.
nmax:=21: with(numtheory): b := proc(n): sigma(n) end: f := series(log(1+add(q(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(0):=1: q(0):=1: a(1):=b(1): q(1):=b(1): for n from 2 to nmax+1 do q(n) := solve(d(n)-b(n), q(n)): a(n):=q(n): od: seq(a(n), n=0..nmax); # End third EXP program.
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n-1, j-1]*DivisorSigma[1, j]*a[n-j], {j, 1, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 22 2017 *)
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)
A318249
a(n) = (n - 1)! * d(n), where d(n) = number of divisors of n (A000005).
Original entry on oeis.org
1, 2, 4, 18, 48, 480, 1440, 20160, 120960, 1451520, 7257600, 239500800, 958003200, 24908083200, 348713164800, 6538371840000, 41845579776000, 2134124568576000, 12804747411456000, 729870602452992000, 9731608032706560000, 204363768686837760000, 2248001455555215360000, 206816133911079813120000
Offset: 1
-
Table[(n - 1)! DivisorSigma[0, n], {n, 1, 24}]
nmax = 24; Rest[CoefficientList[Series[Sum[Sum[x^(j k)/(j k), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 24; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
-
a(n) = (n-1)!*numdiv(n); \\ Michel Marcus, Aug 22 2018
A265024
a(n) = n! * Sum_{d in D(n+1)} (-1)^(d+1)*(n+1)/d, D(n) the divisors of n.
Original entry on oeis.org
1, 1, 8, 6, 144, 480, 5760, 5040, 524160, 2177280, 43545600, 159667200, 6706022400, 49816166400, 2092278988800, 1307674368000, 376610217984000, 4623936565248000, 128047474114560000, 729870602452992000, 77852864261652480000, 613091306060513280000
Offset: 0
-
Rest[CoefficientList[Series[Log[QPochhammer[-1, x]/2], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Oct 15 2017 *)
-
a(n) = n!*sumdiv(n+1, d, (-1)^(d+1)*(n+1)/d); \\ Michel Marcus, Jan 26 2016
-
A265024 = lambda n: factorial(n)*sum((-1)^(d+1)*(n+1)/d for d in divisors(n+1))
[A265024(n) for n in (0..21)]
A356010
a(n) = n! * Sum_{k=1..n} floor(n/k)/k.
Original entry on oeis.org
1, 5, 23, 134, 814, 6324, 50028, 475824, 4806576, 54597600, 644119200, 8847100800, 121718332800, 1853505158400, 29894856364800, 518855607244800, 9197155541145600, 179420609436364800, 3537039053405491200, 75849875285280768000, 1670700245252548608000
Offset: 1
-
S:= ListTools:-PartialSums([seq(numtheory:-sigma(k)/k, k=1..30)]):
seq(n! * S[n], n=1..30); # Robert Israel, Aug 10 2025
-
a(n) = n!*sum(k=1, n, n\k/k);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(k*(1-x^k)))/(1-x)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-x^k))/(1-x)))
-
a(n) = n!*sum(k=1, n, sigma(k)/k); \\ Seiichi Manyama, Aug 03 2022
A330353
Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 4, 18, 112, 810, 7144, 73458, 850672, 11069370, 161190904, 2575237698, 44571447232, 836188737930, 16970931765064, 368985732635538, 8524290269083792, 208874053200038490, 5428866923032585624, 149250273758730282978, 4318265042184721248352
Offset: 1
Cf.
A000041,
A000203,
A000629,
A002745,
A008277,
A038048,
A167137,
A308555,
A330351,
A330352,
A330354.
-
nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A330354
Expansion of e.g.f. Sum_{k>=1} log(1 + x)^k / (k * (1 - log(1 + x)^k)).
Original entry on oeis.org
1, 2, 1, 21, -122, 1752, -21730, 309166, -4521032, 70344768, -1173530712, 21642745704, -448130571696, 10352684535840, -260101132095888, 6921279885508848, -191813249398678272, 5502934340821289088, -163695952380982280832, 5078687529186002247552
Offset: 1
Cf.
A000041,
A000203,
A002743,
A008275,
A038048,
A089064,
A306042,
A330351,
A330352,
A330353,
A330494.
-
nmax = 20; CoefficientList[Series[Sum[Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
Showing 1-10 of 23 results.
Comments