A038048
a(n) = (n-1)! * sigma(n).
Original entry on oeis.org
1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1
a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).
- T. D. Noe, Table of n, a(n) for n = 1..100
- Xiaojun Liu, Motohico Mulase, Adam Sorkin, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, arXiv:1304.0015 [math.AG], 2013.
- H. Ochiai, Counting functions for branched covers of elliptic curves and quasi-modular forms, arXiv:math-ph/9909023, 1999.
-
a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # Emeric Deutsch, Jul 24 2005
-
a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* Jean-François Alcover, Mar 23 2011 *)
-
a(n)=(n-1)!*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
-
A038048 = lambda n: factorial(n-1)*sigma(n,1)
[A038048(n) for n in (1..20)] # Peter Luschny, Jan 19 2016
A121860
a(n) = Sum_{d|n} n!/(d!*(n/d)!).
Original entry on oeis.org
1, 2, 2, 8, 2, 122, 2, 1682, 10082, 30242, 2, 7318082, 2, 17297282, 3632428802, 36843206402, 2, 2981705126402, 2, 1690185726028802, 3379030566912002, 28158588057602, 2, 76941821303636889602, 1077167364120207360002
Offset: 1
-
with(numtheory): seq(n!*add(1/(d!*(n/d)!), d in divisors(n)), n = 1..25); # Peter Bala, Aug 04 2025
-
f[n_] := Block[{d = Divisors@n}, Plus @@ (n!/(d! (n/d)!))]; Array[f, 25] (* Robert G. Wilson v, Sep 11 2006 *)
Table[DivisorSum[n, n!/(#!*(n/#)!) &], {n, 25}] (* Michael De Vlieger, Sep 12 2018 *)
-
a(n) = sumdiv(n, d, n!/(d!*(n/d)!)); \\ Michel Marcus, Sep 13 2018
A087906
a(n) = Sum_{d|n} (n-1)!/(d-1)!.
Original entry on oeis.org
1, 2, 3, 13, 25, 301, 721, 10921, 60481, 740881, 3628801, 106777441, 479001601, 12462690241, 134399865601, 2833553923201, 20922789888001, 892191453753601, 6402373705728001, 268633265290790401, 3652732042831872001, 102181898422712908801, 1124000727777607680001
Offset: 1
-
Array[n \[Function] DivisorSum[n, (n - 1)!/(# - 1)! &], 25] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
-
a(n)=sumdiv(n,d,(n-1)!/(d-1)!); \\ Joerg Arndt, May 21 2013
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
A132958
a(n) = n!*Sum_{d|n} (-1)^(d+1)/d!.
Original entry on oeis.org
1, 1, 7, 11, 121, 479, 5041, 18479, 423361, 1844639, 39916801, 298710719, 6227020801, 43606442879, 1536517382401, 9589093113599, 355687428096001, 4259374594675199, 121645100408832001, 1135353600039859199
Offset: 1
-
f[n_] := Block[{d = Divisors@n}, Plus @@ (n!*(-1)^(d + 1)/d!)]; Array[f, 19] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[(-x)^k/(k!*(x^k - 1)), {k, 25}], {x, 0, 20}], x]] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[1 - Exp[ -x^k], {k, 25}], {x, 0, 20}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
-
a(n) = n!*sumdiv(n, d, (-1)^(d+1)/d!); \\ Michel Marcus, Sep 29 2017
A323295
Number of ways to fill a matrix with the first n positive integers.
Original entry on oeis.org
1, 1, 4, 12, 72, 240, 2880, 10080, 161280, 1088640, 14515200, 79833600, 2874009600, 12454041600, 348713164800, 5230697472000, 104613949440000, 711374856192000, 38414242234368000, 243290200817664000, 14597412049059840000, 204363768686837760000
Offset: 0
The a(4) = 72 matrices consist of:
24 row/column permutations of [1 2 3 4]
+
4 row/column permutations of [1 2]
[3 4]
+
4 row/column permutations of [1 2]
[4 3]
+
4 row/column permutations of [1 3]
[2 4]
+
4 row/column permutations of [1 3]
[4 2]
+
4 row/column permutations of [1 4]
[2 3]
+
4 row/column permutations of [1 4]
[3 2]
+
24 row/column permutations of [1]
[2]
[3]
[4]
-
Join[{1}, Table[DivisorSigma[0, n]*n!, {n, 30}]]
-
a(n) = if (n==0, 1, numdiv(n)*n!); \\ Michel Marcus, Jan 15 2019
A209903
E.g.f.: Product_{n>=1} B(x^n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.
Original entry on oeis.org
1, 1, 4, 17, 111, 752, 6893, 64171, 733540, 8751579, 119847295, 1716294780, 27583937857, 460405876777, 8428298492136, 160944930254405, 3309210789416387, 70814345769448444, 1617322515279759301, 38322855872232745163, 960820910852189283072
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 111*x^4/4! + 752*x^5/5! +...
Let B(x) = exp(exp(x)-1) be the e.g.f. of Bell numbers:
B(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +...
then the e.g.f. of this sequence equals the infinite product:
A(x) = B(x)*B(x^2)*B(x^3)*B(x^4)*B(x^5)*B(x^6)...
The logarithm of the e.g.f. A(x) begins:
log(A(x)) = x + 3*x^2/2! + 7*x^3/3! + 37*x^4/4! + 121*x^5/5! + 1201*x^6/6! +...+ A057625(n)*x^n/n! +...
-
{a(n)=local(Bell=exp(exp(x+x*O(x^n))-1));n!*polcoeff(prod(m=1,n,subst(Bell,x,x^m+x*O(x^n))),n)}
-
{a(n)=n!*polcoeff(exp(sum(m=1,n,x^m/m!/(1-x^m+x*O(x^n)))),n)}
for(n=0,25,print1(a(n),", "))
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sumdiv(k, d, 1/d!)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Jul 02 2021
A354843
a(n) = n! * Sum_{d|n} (n/d)^d / d!.
Original entry on oeis.org
1, 5, 19, 145, 601, 8521, 35281, 672001, 4898881, 82615681, 439084801, 21138606721, 80951270401, 3358578263041, 49506372115201, 1227603183206401, 6046686277632001, 611515751899852801, 2311256907767808001, 254421414038266675201, 4015778465971464192001
Offset: 1
-
a[n_] := n! * DivisorSum[n, (n/#)^#/#! &]; Array[a, 20] (* Amiram Eldar, Jun 08 2022 *)
-
a(n) = n!*sumdiv(n, d, (n/d)^d/d!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, exp(k*x^k)-1)))
A327578
a(n) = n! * Sum_{d|n} d^(n/d - 1) / d!.
Original entry on oeis.org
1, 3, 7, 49, 121, 2521, 5041, 208321, 907201, 32810401, 39916801, 10621860481, 6227020801, 2877004690561, 19233710496001, 1415779600435201, 355687428096001, 1085522620595212801, 121645100408832001, 653741050484890368001, 6259137133527742464001, 576612373659657208473601
Offset: 1
-
a[n_] := n! Sum[d^(n/d - 1)/d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
nmax = 22; CoefficientList[Series[Sum[x^k/(k! (1 - k x^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = n! * sumdiv(n, d, d^(n/d - 1) / d!); \\ Michel Marcus, Sep 17 2019
A320444
Number of uniform hypertrees spanning n vertices.
Original entry on oeis.org
1, 1, 1, 4, 17, 141, 1297, 17683, 262145, 4861405, 100112001, 2371816701, 61917364225, 1796326510993, 56693912375297, 1947734359001551, 72059082110369793, 2863257607266475419, 121439531096594251777, 5480987217944109919765, 262144000000000000000001
Offset: 0
Non-isomorphic representatives of the 5 unlabeled uniform hypertrees on 5 vertices and their multiplicities in the labeled case, which add up to a(5) = 141:
5 X {{1,5},{2,5},{3,5},{4,5}}
60 X {{1,4},{2,5},{3,5},{4,5}}
60 X {{1,3},{2,4},{3,5},{4,5}}
15 X {{1,2,5},{3,4,5}}
1 X {{1,2,3,4,5}}
Cf.
A000272,
A030019,
A035053,
A038041,
A052888,
A057625,
A061095,
A121860,
A134954,
A236696,
A262843.
-
f:= proc(n) local d; add((n-1)!/(d! * ((n-1)/d)!) * (n/d)^((n-1)/d - 1), d = numtheory:-divisors(n-1)); end proc:
f(0):= 1: f(1):= 1:
map(f, [$0..25]); # Robert Israel, Jan 10 2019
-
Table[Sum[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{d,Divisors[n]}],{n,10}]
-
a(n) = if (n<2, 1, n--; sumdiv(n, d, n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1))); \\ Michel Marcus, Jan 10 2019
A355886
a(n) = n! * Sum_{k=1..n} floor(n/k)/k!.
Original entry on oeis.org
1, 5, 22, 125, 746, 5677, 44780, 420401, 4206970, 47543141, 562891352, 7573655905, 104684547566, 1596368400005, 25482043382476, 439969180782017, 7835163501390290, 151712475696833221, 3004182138648663200, 63854641556089628801, 1400563708969910620822
Offset: 1
-
Table[n! * Sum[Floor[n/k]/k!, {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
-
a(n) = n!*sum(k=1, n, n\k/k!);
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(k!*(1-x^k)))/(1-x)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, exp(x^k)-1)/(1-x)))
-
a(n) = n!*sum(k=1, n, sumdiv(k, d, 1/d!)); \\ Seiichi Manyama, Aug 08 2022
Showing 1-10 of 30 results.
Comments