cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A038048 a(n) = (n-1)! * sigma(n).

Original entry on oeis.org

1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1

Views

Author

Keywords

Comments

sigma(n) = A000203(n) is the sum of the divisors of n.
Number of labeled regular octopi (or octopuses, cycles of ordered sets all the same size).
Left edge of triangle in A008298.

Examples

			a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} n!/d. - Amarnath Murthy, Jul 24 2005
a(p) = (p+1)*(p-1)! if p is a prime. - Amarnath Murthy, Jul 24 2005
E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - N. J. A. Sloane
E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - Vladeta Jovovic, Mar 27 2005
a(n) = A000142(n-1)*A000203(n). - Omar E. Pol, Feb 26 2014

Extensions

More terms from Emeric Deutsch, Jul 24 2005
Edited by N. J. A. Sloane, May 12 2008 at the suggestion of Joerg Arndt

A121860 a(n) = Sum_{d|n} n!/(d!*(n/d)!).

Original entry on oeis.org

1, 2, 2, 8, 2, 122, 2, 1682, 10082, 30242, 2, 7318082, 2, 17297282, 3632428802, 36843206402, 2, 2981705126402, 2, 1690185726028802, 3379030566912002, 28158588057602, 2, 76941821303636889602, 1077167364120207360002
Offset: 1

Views

Author

Vladeta Jovovic, Sep 09 2006

Keywords

Comments

a(n) = 2 iff n is prime.
a(468) has 1007 decimal digits. - Michael De Vlieger, Sep 12 2018
From Gus Wiseman, Jan 10 2019: (Start)
Number of matrices whose entries are 1,...,n, up to row and column permutations. For example, inequivalent representatives of the a(4) = 8 matrices are:
[1 2 3 4]
.
[1 2] [1 2] [1 3] [1 3] [1 4] [1 4]
[3 4] [4 3] [2 4] [4 2] [2 3] [3 2]
.
[1]
[2]
[3]
[4]
(End)
Conjecture: the sequence a(n) taken modulo a positive integer k >= 3 eventually becomes constant equal to 2. For example, the sequence taken modulo 11 is [1, 2, 2, 8, 2, 1, 2, 10, 6, 3, 2, 2, 2, 2, 2, 2, ...]. - Peter Bala, Aug 08 2025

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n!*add(1/(d!*(n/d)!), d in divisors(n)), n = 1..25); # Peter Bala, Aug 04 2025
  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (n!/(d! (n/d)!))]; Array[f, 25] (* Robert G. Wilson v, Sep 11 2006 *)
    Table[DivisorSum[n, n!/(#!*(n/#)!) &], {n, 25}] (* Michael De Vlieger, Sep 12 2018 *)
  • PARI
    a(n) = sumdiv(n, d, n!/(d!*(n/d)!)); \\ Michel Marcus, Sep 13 2018

Formula

E.g.f.: Sum_{k>0} (exp(x^k)-1)/k!.

Extensions

More terms from Robert G. Wilson v, Sep 11 2006

A087906 a(n) = Sum_{d|n} (n-1)!/(d-1)!.

Original entry on oeis.org

1, 2, 3, 13, 25, 301, 721, 10921, 60481, 740881, 3628801, 106777441, 479001601, 12462690241, 134399865601, 2833553923201, 20922789888001, 892191453753601, 6402373705728001, 268633265290790401, 3652732042831872001, 102181898422712908801, 1124000727777607680001
Offset: 1

Views

Author

Vladeta Jovovic, Oct 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Array[n \[Function] DivisorSum[n, (n - 1)!/(# - 1)! &], 25] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
  • PARI
    a(n)=sumdiv(n,d,(n-1)!/(d-1)!); \\ Joerg Arndt, May 21 2013

Formula

E.g.f.: Sum_{k>0} (exp(x^k)-1)/k = -Sum_{k>0} log(1-x^k)/k!.

Extensions

More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

A132958 a(n) = n!*Sum_{d|n} (-1)^(d+1)/d!.

Original entry on oeis.org

1, 1, 7, 11, 121, 479, 5041, 18479, 423361, 1844639, 39916801, 298710719, 6227020801, 43606442879, 1536517382401, 9589093113599, 355687428096001, 4259374594675199, 121645100408832001, 1135353600039859199
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (n!*(-1)^(d + 1)/d!)]; Array[f, 19] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
    Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[(-x)^k/(k!*(x^k - 1)), {k, 25}], {x, 0, 20}], x]] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
    Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[1 - Exp[ -x^k], {k, 25}], {x, 0, 20}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (-1)^(d+1)/d!); \\ Michel Marcus, Sep 29 2017

Formula

E.g.f.: Sum_{k>0} (-x)^k/(k!*(x^k-1)) or Sum_{k>0}(1-exp(-x^k)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007

A323295 Number of ways to fill a matrix with the first n positive integers.

Original entry on oeis.org

1, 1, 4, 12, 72, 240, 2880, 10080, 161280, 1088640, 14515200, 79833600, 2874009600, 12454041600, 348713164800, 5230697472000, 104613949440000, 711374856192000, 38414242234368000, 243290200817664000, 14597412049059840000, 204363768686837760000
Offset: 0

Views

Author

Gus Wiseman, Jan 12 2019

Keywords

Examples

			The a(4) = 72 matrices consist of:
  24 row/column permutations of [1 2 3 4]
+
  4 row/column permutations of [1 2]
                               [3 4]
+
  4 row/column permutations of [1 2]
                               [4 3]
+
  4 row/column permutations of [1 3]
                               [2 4]
+
  4 row/column permutations of [1 3]
                               [4 2]
+
  4 row/column permutations of [1 4]
                               [2 3]
+
  4 row/column permutations of [1 4]
                               [3 2]
+
  24 row/column permutations of [1]
                                [2]
                                [3]
                                [4]
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[DivisorSigma[0, n]*n!, {n, 30}]]
  • PARI
    a(n) = if (n==0, 1, numdiv(n)*n!); \\ Michel Marcus, Jan 15 2019

Formula

a(n) = A000005(n) * n! for n > 0, a(0) = 1.
E.g.f.: 1 + Sum_{k>=1} x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 13 2019

A209903 E.g.f.: Product_{n>=1} B(x^n) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.

Original entry on oeis.org

1, 1, 4, 17, 111, 752, 6893, 64171, 733540, 8751579, 119847295, 1716294780, 27583937857, 460405876777, 8428298492136, 160944930254405, 3309210789416387, 70814345769448444, 1617322515279759301, 38322855872232745163, 960820910852189283072
Offset: 0

Views

Author

Paul D. Hanna, Mar 15 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 17*x^3/3! + 111*x^4/4! + 752*x^5/5! +...
Let B(x) = exp(exp(x)-1) be the e.g.f. of Bell numbers:
B(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +...
then the e.g.f. of this sequence equals the infinite product:
A(x) = B(x)*B(x^2)*B(x^3)*B(x^4)*B(x^5)*B(x^6)...
The logarithm of the e.g.f. A(x) begins:
log(A(x)) = x + 3*x^2/2! + 7*x^3/3! + 37*x^4/4! + 121*x^5/5! + 1201*x^6/6! +...+ A057625(n)*x^n/n! +...
		

Crossrefs

Cf. A057625 (log), A209902, A330199.

Programs

  • PARI
    {a(n)=local(Bell=exp(exp(x+x*O(x^n))-1));n!*polcoeff(prod(m=1,n,subst(Bell,x,x^m+x*O(x^n))),n)}
    
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n,x^m/m!/(1-x^m+x*O(x^n)))),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=1, n, k*sumdiv(k, d, 1/d!)*a(n-k)/(n-k)!)); \\ Seiichi Manyama, Jul 02 2021

Formula

E.g.f.: exp( Sum_{n>=1} x^n/n! / (1-x^n) ).
E.g.f.: exp( Sum_{n>=1} A057625(n)*x^n/n! ).
E.g.f.: exp( Sum_{n>=1} exp(x^n)-1 ).
a(n) = (n-1)! * Sum_{k=1..n} k * (Sum_{d|k} 1/d!) * a(n-k)/(n-k)! for n > 0. - Seiichi Manyama, Jul 02 2021

A354843 a(n) = n! * Sum_{d|n} (n/d)^d / d!.

Original entry on oeis.org

1, 5, 19, 145, 601, 8521, 35281, 672001, 4898881, 82615681, 439084801, 21138606721, 80951270401, 3358578263041, 49506372115201, 1227603183206401, 6046686277632001, 611515751899852801, 2311256907767808001, 254421414038266675201, 4015778465971464192001
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, (n/#)^#/#! &]; Array[a, 20] (* Amiram Eldar, Jun 08 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (n/d)^d/d!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, exp(k*x^k)-1)))

Formula

E.g.f.: Sum_{k>0} (exp(k * x^k) - 1).
If p is prime, a(p) = 1 + p * p!.

A327578 a(n) = n! * Sum_{d|n} d^(n/d - 1) / d!.

Original entry on oeis.org

1, 3, 7, 49, 121, 2521, 5041, 208321, 907201, 32810401, 39916801, 10621860481, 6227020801, 2877004690561, 19233710496001, 1415779600435201, 355687428096001, 1085522620595212801, 121645100408832001, 653741050484890368001, 6259137133527742464001, 576612373659657208473601
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! Sum[d^(n/d - 1)/d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[x^k/(k! (1 - k x^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = n! * sumdiv(n, d, d^(n/d - 1) / d!); \\ Michel Marcus, Sep 17 2019

Formula

E.g.f.: Sum_{k>=1} x^k / (k! * (1 - k * x^k)).

A320444 Number of uniform hypertrees spanning n vertices.

Original entry on oeis.org

1, 1, 1, 4, 17, 141, 1297, 17683, 262145, 4861405, 100112001, 2371816701, 61917364225, 1796326510993, 56693912375297, 1947734359001551, 72059082110369793, 2863257607266475419, 121439531096594251777, 5480987217944109919765, 262144000000000000000001
Offset: 0

Views

Author

Gus Wiseman, Jan 09 2019

Keywords

Comments

The density of a hypergraph is the sum of sizes of its edges minus the number of edges minus the number of vertices. A hypertree is a connected hypergraph of density -1. A hypergraph is uniform if its edges all have the same size. The span of a hypergraph is the union of its edges.

Examples

			Non-isomorphic representatives of the 5 unlabeled uniform hypertrees on 5 vertices and their multiplicities in the labeled case, which add up to a(5) = 141:
   5 X {{1,5},{2,5},{3,5},{4,5}}
  60 X {{1,4},{2,5},{3,5},{4,5}}
  60 X {{1,3},{2,4},{3,5},{4,5}}
  15 X {{1,2,5},{3,4,5}}
   1 X {{1,2,3,4,5}}
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; add((n-1)!/(d! * ((n-1)/d)!) * (n/d)^((n-1)/d - 1), d = numtheory:-divisors(n-1)); end proc:
    f(0):= 1: f(1):= 1:
    map(f, [$0..25]); # Robert Israel, Jan 10 2019
  • Mathematica
    Table[Sum[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{d,Divisors[n]}],{n,10}]
  • PARI
    a(n) = if (n<2, 1, n--; sumdiv(n, d, n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1))); \\ Michel Marcus, Jan 10 2019

Formula

a(n + 1) = Sum_{d|n} n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1).
a(p prime) = 1 + (p + 1)^(p - 1).

A355886 a(n) = n! * Sum_{k=1..n} floor(n/k)/k!.

Original entry on oeis.org

1, 5, 22, 125, 746, 5677, 44780, 420401, 4206970, 47543141, 562891352, 7573655905, 104684547566, 1596368400005, 25482043382476, 439969180782017, 7835163501390290, 151712475696833221, 3004182138648663200, 63854641556089628801, 1400563708969910620822
Offset: 1

Views

Author

Seiichi Manyama, Jul 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Floor[n/k]/k!, {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, n\k/k!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(k!*(1-x^k)))/(1-x)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, exp(x^k)-1)/(1-x)))
    
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, 1/d!)); \\ Seiichi Manyama, Aug 08 2022

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} x^k/(k! * (1 - x^k)).
E.g.f.: (1/(1-x)) * Sum_{k>0} (exp(x^k) - 1).
a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/d! = n! * Sum_{k=1..n} A057625(k)/k!. - Seiichi Manyama, Aug 08 2022
a(n) ~ A229837 * n! * n. - Vaclav Kotesovec, Aug 11 2025
Showing 1-10 of 30 results. Next