A057625 a(n) = n! * sum 1/k! where the sum is over all positive integers k that divide n.
1, 3, 7, 37, 121, 1201, 5041, 62161, 423361, 5473441, 39916801, 818959681, 6227020801, 130784734081, 1536517382401, 32256486662401, 355687428096001, 10679532671808001, 121645100408832001, 3770998783116364801, 59616236292028416001, 1686001119824999577601
Offset: 1
Keywords
Examples
a(4) = 4! (1 + 1/2! + 1/4!) = 24 (1 + 1/2 + 1/24) = 37.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..449
Crossrefs
Programs
-
Mathematica
a[n_] := n! DivisorSum[n, 1/#! &]; Array[a, 22] (* Jean-François Alcover, Dec 23 2015 *)
-
PARI
a(n)=n! * sumdiv(n, d, 1/d! ); /* Joerg Arndt, Oct 07 2012 */
Formula
E.g.f.: Sum_{n>0} (exp(x^n)-1). - Vladeta Jovovic, Dec 30 2001
E.g.f.: Sum_{k>0} x^k/k!/(1-x^k). - Vladeta Jovovic, Oct 14 2003
Equals the logarithmic derivative of A209903. - Paul D. Hanna, Jul 26 2012
Comments