cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A355989 a(n) = n! / (2 * floor(n/2)!).

Original entry on oeis.org

1, 3, 6, 30, 60, 420, 840, 7560, 15120, 166320, 332640, 4324320, 8648640, 129729600, 259459200, 4410806400, 8821612800, 167610643200, 335221286400, 7039647014400, 14079294028800, 323823762662400, 647647525324800, 16191188133120000, 32382376266240000
Offset: 2

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Column 2 of A355996.

Programs

  • Mathematica
    a[n_] := n!/(2 * Floor[n/2]!); Array[a, 25, 2] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!/(2*(n\2)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^2)*(exp(x^2)-1)/(2*(1-x))))
    
  • Python
    from math import factorial, floor
    def a(n): return int(factorial(n)/(2*factorial(floor(n/2))))
    print([a(n) for n in range(2, 30)]) # Javier Rivera Romeu, Jul 22 2022
    
  • Python
    from sympy import rf
    def A355989(n): return rf((m:=n+1>>1)+(n+1&1),m)>>1 # Chai Wah Wu, Jul 22 2022

Formula

E.g.f.: (1 - x^2) * (exp(x^2) - 1)/(2 * (1 - x)).
a(n) = A081125(n)/2.
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=2} 1/a(n) = 3*exp(1/4)*sqrt(Pi)*erf(1/2) - 2, where erf is the error function.
Sum_{n>=2} (-1)^n/a(n) = 2 - exp(1/4)*sqrt(Pi)*erf(1/2). (End)

A355990 a(n) = n! / (6 * floor(n/3)!).

Original entry on oeis.org

1, 4, 20, 60, 420, 3360, 10080, 100800, 1108800, 3326400, 43243200, 605404800, 1816214400, 29059430400, 494010316800, 1482030950400, 28158588057600, 563171761152000, 1689515283456000, 37169336236032000, 854894733428736000, 2564684200286208000
Offset: 3

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Column 3 of A355996.

Programs

  • Mathematica
    a[n_] := n!/(6 * Floor[n/3]!); Array[a, 22, 3] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!/(6*(n\3)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)*(exp(x^3)-1)/(6*(1-x))))

Formula

E.g.f.: (1 - x^3) * (exp(x^3) - 1)/(6 * (1 - x)).
a(n) = A355988(n)/6.

A355996 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) = n!/(k! * floor(n/k)!).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 30, 20, 5, 1, 1, 60, 60, 30, 6, 1, 1, 420, 420, 210, 42, 7, 1, 1, 840, 3360, 840, 336, 56, 8, 1, 1, 7560, 10080, 7560, 3024, 504, 72, 9, 1, 1, 15120, 100800, 75600, 15120, 5040, 720, 90, 10, 1, 1, 166320, 1108800, 831600, 166320, 55440, 7920, 990, 110, 11, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   6,    4,   1;
  1,  30,   20,   5,   1;
  1,  60,   60,  30,   6,  1;
  1, 420,  420, 210,  42,  7, 1;
  1, 840, 3360, 840, 336, 56, 8, 1;
  ...
		

Crossrefs

Row sums give A355991.
Column k=1..3 give A000012, A355989, A355990.

Programs

  • Mathematica
    T[n_, k_] := n!/(k!*Floor[n/k]!); Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    T(n, k) = n!/(k!*(n\k)!);

Formula

E.g.f. of column k: (1 - x^k) * (exp(x^k) - 1)/(k! * (1 - x)).

A355987 a(n) = n! * Sum_{k=1..n} 1/floor(n/k)!.

Original entry on oeis.org

1, 3, 13, 61, 421, 2641, 23521, 203281, 2071441, 22407841, 286403041, 3453468481, 51122111041, 759194916481, 12216117513601, 203300293996801, 3811792426041601, 69634723878720001, 1444704854104512001, 29725332567567436801, 658231789483184716801
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[1/Floor[n/k]!, {k, 1, n}]; Array[a, 21] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, 1/(n\k)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1,N, (1-x^k)*(exp(x^k)-1))/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (1 - x^k) * (exp(x^k) - 1).
a(n) ~ c * n! * n, where c = 0.59962032... - Vaclav Kotesovec, Aug 03 2022
Conjecture: c = Sum_{k>=1} 1/((k+1)!*k) = 2 - exp(1) - A001620 + A091725. - Vaclav Kotesovec, Sep 24 2023

A356011 a(n) = n! * Sum_{k=1..n} 1/(k! * floor(n/k)).

Original entry on oeis.org

1, 2, 6, 17, 80, 337, 2240, 14681, 117010, 1023941, 10900472, 108881665, 1375544846, 17732140805, 247041590476, 3605768497217, 59990390084690, 977383707751621, 18214603019184800, 337615168055209601, 6763842079452393622, 141262515443311046885
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2022

Keywords

Crossrefs

Row sums of A356013.

Programs

  • Mathematica
    Table[n! * Sum[1/(k!*Floor[n/k]), {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k!*(n\k)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, (1-x^k)*log(1-x^k)/k!)/(1-x)))

Formula

E.g.f.: -(1/(1-x)) * Sum_{k>0} (1 - x^k) * log(1 - x^k)/k!.
a(n) ~ exp(1) * (n-1)!. - Vaclav Kotesovec, Aug 11 2025

A356004 a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d! * (k/d)!).

Original entry on oeis.org

1, 4, 14, 64, 322, 2054, 14380, 116722, 1060580, 10636042, 116996464, 1411275650, 18346583452, 256869465610, 3856674412952, 61743633813634, 1049641774831780, 18896533652098442, 359034139389870400, 7182372973523436802, 150833211474559084844
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[DivisorSum[k, 1/(#!*(k/#)!) &], {k, 1, n}]; Array[a, 21] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k,d,1/(d!*(k/d)!)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp(x^k)-1)/k!)/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (exp(x^k) - 1)/k!.
a(n) = n! * Sum_{k=1..n} A121860(k)/k!.
Showing 1-6 of 6 results.