cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356009 a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d * (k/d)!).

Original entry on oeis.org

1, 4, 15, 73, 390, 2641, 19208, 164585, 1541746, 16158341, 181370552, 2283224065, 30160914446, 434715492485, 6655132252876, 109315669969217, 1879289179364690, 34719396682318021, 666070910669770400, 13590051478686198401, 289043813095242038422
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Sum[1/(d*(k/d)!), {d,Divisors[k]}], {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, 1/(d*(k/d)!)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp(x^k)-1)/k)/(1-x)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-x^k)/k!)/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (exp(x^k) - 1)/k.
E.g.f.: -(1/(1-x)) * Sum_{k>0} log(1-x^k)/k!.
Showing 1-1 of 1 results.