cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356013 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) = n!/(k! * floor(n/k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 6, 4, 1, 24, 30, 20, 5, 1, 120, 120, 60, 30, 6, 1, 720, 840, 420, 210, 42, 7, 1, 5040, 5040, 3360, 840, 336, 56, 8, 1, 40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1, 362880, 362880, 201600, 75600, 15120, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2022

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      2,     3,     1;
      6,     6,     4,    1;
     24,    30,    20,    5,    1;
    120,   120,    60,   30,    6,   1;
    720,   840,   420,  210,   42,   7,  1;
   5040,  5040,  3360,  840,  336,  56,  8, 1;
  40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1;
  ...
		

Crossrefs

Row sums gives A356011.
Column k=1..3 give A000142(n-1), |A265376(n)|, A356012.
Cf. A355996.

Programs

  • PARI
    T(n, k) = n!/(k!*(n\k));

Formula

E.g.f. of column k: -(1 - x^k) * log(1 - x^k)/(k! * (1 - x)).

A356015 a(n) = n! * Sum_{k=1..n} 1/(k * floor(n/k)!).

Original entry on oeis.org

1, 2, 6, 21, 125, 625, 5089, 38185, 343657, 3376081, 40765681, 427649761, 6038448481, 84486386881, 1252766088001, 19388604009601, 350529058051201, 5938944734419201, 119242323659692801, 2303746722596390401, 48358406991122726401, 1063884813011759692801
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1 / (k*Floor[n/k]!), {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k*(n\k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (1-x^k)*(exp(x^k)-1)/k)/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (1 - x^k) * (exp(x^k) - 1)/k.
Conjecture: a(n) ~ c * n!, where c = 0.95488757... - Vaclav Kotesovec, Aug 11 2025
Showing 1-2 of 2 results.