cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Javier Rivera Romeu

Javier Rivera Romeu's wiki page.

Javier Rivera Romeu has authored 1 sequences.

A351989 Fibonacci(p-J(p,5)) mod p^3, where p is the n-th prime and J is the Jacobi symbol.

Original entry on oeis.org

2, 3, 5, 21, 55, 377, 2584, 2584, 9867, 754, 27683, 34706, 55391, 77486, 2961, 49237, 178121, 151768, 269809, 180340, 137459, 440741, 304859, 634125, 3589, 224018, 925249, 689508, 276097, 389850, 1566164, 488892, 101791, 731140, 1838362, 3406409, 31557, 2311014, 3158805, 4571698, 2914836, 3267050, 1294789, 6599056, 7246251, 159399
Offset: 1

Author

Javier Rivera Romeu, Feb 27 2022

Keywords

Comments

Very similar to A113650 but modulo p^3.

Crossrefs

Cf. A113650.

Programs

  • Mathematica
    a[n_]:= Mod[Fibonacci[(n-JacobiSymbol[n, 5])], Power[n, 3]]; Table[a[Prime[n]], {n, 50}]
  • PARI
    a(n) = my(p=prime(n)); lift(Mod([1, 1; 1, 0]^(p-kronecker(p, 5)), p^3)[1, 2]); \\ Michel Marcus, Feb 28 2022
    
  • Python
    from sympy import prime, fibonacci
    from sympy.ntheory import jacobi_symbol
    def A351989(n): return fibonacci((p := prime(n))-jacobi_symbol(p,5)) % p**3 # Chai Wah Wu, Feb 28 2022
  • Sage
    p = 1
    while p < 200:
        print(fibonacci(p-jacobi_symbol(p,5))%pow(p,3), end=', ')
        p = next_prime(p)