cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355991 a(n) = n! * Sum_{k=1..n} 1/(k! * floor(n/k)!).

Original entry on oeis.org

1, 2, 5, 12, 57, 158, 1101, 5442, 28811, 212502, 2337513, 9422306, 122489967, 1654319046, 13917499277, 111631450818, 1897734663891, 23705612782022, 450406642858401, 3091477152208002, 51404897928720023, 1130752882197523686, 26007316290543044757
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[1/(k! * Floor[n/k]!), {k, 1, n}]; Array[a, 23] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k!*(n\k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (1-x^k)*(exp(x^k)-1)/k!)/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (1 - x^k) * (exp(x^k) - 1)/k!.

A355990 a(n) = n! / (6 * floor(n/3)!).

Original entry on oeis.org

1, 4, 20, 60, 420, 3360, 10080, 100800, 1108800, 3326400, 43243200, 605404800, 1816214400, 29059430400, 494010316800, 1482030950400, 28158588057600, 563171761152000, 1689515283456000, 37169336236032000, 854894733428736000, 2564684200286208000
Offset: 3

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Column 3 of A355996.

Programs

  • Mathematica
    a[n_] := n!/(6 * Floor[n/3]!); Array[a, 22, 3] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!/(6*(n\3)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)*(exp(x^3)-1)/(6*(1-x))))

Formula

E.g.f.: (1 - x^3) * (exp(x^3) - 1)/(6 * (1 - x)).
a(n) = A355988(n)/6.

A355996 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) = n!/(k! * floor(n/k)!).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 30, 20, 5, 1, 1, 60, 60, 30, 6, 1, 1, 420, 420, 210, 42, 7, 1, 1, 840, 3360, 840, 336, 56, 8, 1, 1, 7560, 10080, 7560, 3024, 504, 72, 9, 1, 1, 15120, 100800, 75600, 15120, 5040, 720, 90, 10, 1, 1, 166320, 1108800, 831600, 166320, 55440, 7920, 990, 110, 11, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,    1;
  1,   6,    4,   1;
  1,  30,   20,   5,   1;
  1,  60,   60,  30,   6,  1;
  1, 420,  420, 210,  42,  7, 1;
  1, 840, 3360, 840, 336, 56, 8, 1;
  ...
		

Crossrefs

Row sums give A355991.
Column k=1..3 give A000012, A355989, A355990.

Programs

  • Mathematica
    T[n_, k_] := n!/(k!*Floor[n/k]!); Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    T(n, k) = n!/(k!*(n\k)!);

Formula

E.g.f. of column k: (1 - x^k) * (exp(x^k) - 1)/(k! * (1 - x)).

A370890 A(n, k) = 2^n*Pochhammer(k/2, floor((n+1)/2)). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 4, 3, 1, 0, 12, 16, 6, 4, 1, 0, 60, 32, 30, 8, 5, 1, 0, 120, 192, 60, 48, 10, 6, 1, 0, 840, 384, 420, 96, 70, 12, 7, 1, 0, 1680, 3072, 840, 768, 140, 96, 14, 8, 1, 0, 15120, 6144, 7560, 1536, 1260, 192, 126, 16, 9, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,  1,   1,   1,   1,    1,    1,    1,    1,    1, ...
[1] 0,  1,   2,   3,   4,    5,    6,    7,    8,    9, ...
[2] 0,  2,   4,   6,   8,   10,   12,   14,   16,   18, ...
[3] 0,  6,  16,  30,  48,   70,   96,  126,  160,  198, ...
[4] 0, 12,  32,  60,  96,  140,  192,  252,  320,  396, ...
[5] 0, 60, 192, 420, 768, 1260, 1920, 2772, 3840, 5148, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   2,   2,  1;
[4] 0,   6,   4,  3,  1;
[5] 0,  12,  16,  6,  4,  1;
[6] 0,  60,  32, 30,  8,  5, 1;
[7] 0, 120, 192, 60, 48, 10, 6, 1;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, iquo(n+1,2)):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A370890[n_, k_] := 2^n*Pochhammer[k/2, Floor[(n+1)/2]];
    Table[A370890[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    # Note the use of different kinds of division.
    def A(n, k): return 2**n * rising_factorial(k/2, (n+1)//2)
    for n in range(0, 9): print([A(n, k) for k in range(0, 9)])
Showing 1-4 of 4 results.