cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355991 a(n) = n! * Sum_{k=1..n} 1/(k! * floor(n/k)!).

Original entry on oeis.org

1, 2, 5, 12, 57, 158, 1101, 5442, 28811, 212502, 2337513, 9422306, 122489967, 1654319046, 13917499277, 111631450818, 1897734663891, 23705612782022, 450406642858401, 3091477152208002, 51404897928720023, 1130752882197523686, 26007316290543044757
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[1/(k! * Floor[n/k]!), {k, 1, n}]; Array[a, 23] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, 1/(k!*(n\k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (1-x^k)*(exp(x^k)-1)/k!)/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (1 - x^k) * (exp(x^k) - 1)/k!.

A355989 a(n) = n! / (2 * floor(n/2)!).

Original entry on oeis.org

1, 3, 6, 30, 60, 420, 840, 7560, 15120, 166320, 332640, 4324320, 8648640, 129729600, 259459200, 4410806400, 8821612800, 167610643200, 335221286400, 7039647014400, 14079294028800, 323823762662400, 647647525324800, 16191188133120000, 32382376266240000
Offset: 2

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Column 2 of A355996.

Programs

  • Mathematica
    a[n_] := n!/(2 * Floor[n/2]!); Array[a, 25, 2] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!/(2*(n\2)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^2)*(exp(x^2)-1)/(2*(1-x))))
    
  • Python
    from math import factorial, floor
    def a(n): return int(factorial(n)/(2*factorial(floor(n/2))))
    print([a(n) for n in range(2, 30)]) # Javier Rivera Romeu, Jul 22 2022
    
  • Python
    from sympy import rf
    def A355989(n): return rf((m:=n+1>>1)+(n+1&1),m)>>1 # Chai Wah Wu, Jul 22 2022

Formula

E.g.f.: (1 - x^2) * (exp(x^2) - 1)/(2 * (1 - x)).
a(n) = A081125(n)/2.
From Amiram Eldar, Jul 26 2022: (Start)
Sum_{n>=2} 1/a(n) = 3*exp(1/4)*sqrt(Pi)*erf(1/2) - 2, where erf is the error function.
Sum_{n>=2} (-1)^n/a(n) = 2 - exp(1/4)*sqrt(Pi)*erf(1/2). (End)

A355990 a(n) = n! / (6 * floor(n/3)!).

Original entry on oeis.org

1, 4, 20, 60, 420, 3360, 10080, 100800, 1108800, 3326400, 43243200, 605404800, 1816214400, 29059430400, 494010316800, 1482030950400, 28158588057600, 563171761152000, 1689515283456000, 37169336236032000, 854894733428736000, 2564684200286208000
Offset: 3

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Column 3 of A355996.

Programs

  • Mathematica
    a[n_] := n!/(6 * Floor[n/3]!); Array[a, 22, 3] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!/(6*(n\3)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)*(exp(x^3)-1)/(6*(1-x))))

Formula

E.g.f.: (1 - x^3) * (exp(x^3) - 1)/(6 * (1 - x)).
a(n) = A355988(n)/6.

A356013 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) = n!/(k! * floor(n/k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 6, 4, 1, 24, 30, 20, 5, 1, 120, 120, 60, 30, 6, 1, 720, 840, 420, 210, 42, 7, 1, 5040, 5040, 3360, 840, 336, 56, 8, 1, 40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1, 362880, 362880, 201600, 75600, 15120, 5040, 720, 90, 10, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2022

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      2,     3,     1;
      6,     6,     4,    1;
     24,    30,    20,    5,    1;
    120,   120,    60,   30,    6,   1;
    720,   840,   420,  210,   42,   7,  1;
   5040,  5040,  3360,  840,  336,  56,  8, 1;
  40320, 45360, 20160, 7560, 3024, 504, 72, 9, 1;
  ...
		

Crossrefs

Row sums gives A356011.
Column k=1..3 give A000142(n-1), |A265376(n)|, A356012.
Cf. A355996.

Programs

  • PARI
    T(n, k) = n!/(k!*(n\k));

Formula

E.g.f. of column k: -(1 - x^k) * log(1 - x^k)/(k! * (1 - x)).
Showing 1-4 of 4 results.