cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370419 A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 8, 3, 1, 0, 105, 48, 15, 4, 1, 0, 945, 384, 105, 24, 5, 1, 0, 10395, 3840, 945, 192, 35, 6, 1, 0, 135135, 46080, 10395, 1920, 315, 48, 7, 1, 0, 2027025, 645120, 135135, 23040, 3465, 480, 63, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,   1,    1,     1,     1,     1,     1,      1,      1, ...
[1] 0,   1,    2,     3,     4,     5,     6,      7,      8, ...
[2] 0,   3,    8,    15,    24,    35,    48,     63,     80, ...
[3] 0,  15,   48,   105,   192,   315,   480,    693,    960, ...
[4] 0, 105,  384,   945,  1920,  3465,  5760,   9009,  13440, ...
[5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   3,   2,   1;
[4] 0,  15,   8,   3,  1;
[5] 0, 105,  48,  15,  4, 1;
[6] 0, 945, 384, 105, 24, 5, 1;
.
From _Werner Schulte_, Mar 07 2024: (Start)
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1   1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2   3    4 ... |
    | 0   3   2        | * |     1 3 6 ... | = | 0   3   8  15   24 ... |
    | 0  15  18   6    |   |       1 4 ... |   | 0  15  48 105  192 ... |
    | 0 105 174 108 24 |   |         1 ... |   | 0 105 384 945 1920 ... |
    | . . .            |   | . . .         |   | . . .                  |. (End)
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..8);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the comment of Werner Schulte about the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371025(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));  #  Peter Luschny, Mar 08 2024
  • Mathematica
    A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
    Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 2**n * rising_factorial(k/2, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-2)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
From Werner Schulte, Mar 07 2024: (Start)
A(n, k) = Product_{i=1..n} (2*i - 2 + k).
E.g.f. of column k: Sum_{n>=0} A(n, k) * t^n / (n!) = (1/sqrt(1 - 2*t))^k.
A(n, k) = A(n+1, k-2) / (k - 2) for k > 2.
A(n, k) = Sum_{i=0..k-1} i! * A265649(n, i) * binomial(k-1, i) for k > 0.
E.g.f. of row n > 0: Sum_{k>=1} A(n, k) * x^k / (k!) = (Sum_{k=1..n} A035342(n, k) * x^k) * exp(x).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (k! * n!) = exp(x/sqrt(1 - 2*t)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1 / (1 - x/sqrt(1 - 2*t)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A035342(n, k) * k! for 1 <= k <= n and L(n, 0) = 0^n. Note that L(n, k) + L(n, k+1) = A265649(n, k) * k! for 0 <= k <= n. (End)

A370912 a(n) = n*(n + 2)*(n + 4).

Original entry on oeis.org

0, 15, 48, 105, 192, 315, 480, 693, 960, 1287, 1680, 2145, 2688, 3315, 4032, 4845, 5760, 6783, 7920, 9177, 10560, 12075, 13728, 15525, 17472, 19575, 21840, 24273, 26880, 29667, 32640, 35805, 39168, 42735, 46512, 50505, 54720, 59163, 63840, 68757, 73920
Offset: 0

Views

Author

Peter Luschny, Mar 05 2024

Keywords

Crossrefs

Cases of A370419(n, k): A000012 (n=0), A001477 (n=1), A005563 (n=2), this sequence (n=3), A190577(n=4).

Programs

  • Maple
    a := n -> n*(n + 2)*(n + 4): seq(a(n), n = 0..40);
    # Using the generating function:
    gf := 3*x*(x^2 - 4*x + 5)/(x - 1)^4: ser := series(gf, x, 42):
    seq(coeff(ser, x, n), n = 0..40);
  • Mathematica
    Table[n(n+2)(n+4), {n,0,40}] (* or *) CoefficientList[Series[3*x*(x^2 - 4*x + 5)/(x - 1)^4,{x,0,40}],x] (* James C. McMahon, Mar 05 2024 *)

Formula

a(n) = 8*Pochhammer(n/2, 3).
a(n) = [x^n] 3*x*(x^2 - 4*x + 5)/(x - 1)^4.
a(n) = 3 * A077415(n + 2).
From Klaus Purath, Aug 02 2024: (Start)
a(n)^2 = A028347(n+2)^3 + 4*A028347(n+2)^2.
a(n+1) - a(n) = A211441(n+2).
a(n) = 3*Sum_{i = 1..n} A028387(i). (End)
E.g.f.: exp(x)*x*(15 + 9*x + x^2). - Stefano Spezia, Aug 18 2024
From Amiram Eldar, Oct 03 2024: (Start)
Sum_{n>=1} 1/a(n) = 11/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5/96. (End)
Showing 1-2 of 2 results.