cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370982 a(n) = Sum_{k=0..n} 2^(n - k)*Pochhammer(k/2, n - k). Row sums of A370419(n - k, k).

Original entry on oeis.org

1, 1, 2, 6, 27, 173, 1464, 15414, 193901, 2834337, 47182518, 880910414, 18225754839, 413835006621, 10230048547292, 273473280803598, 7860479860630329, 241731205891735649, 7919436892637421066, 275351783014543431222, 10126387847107625874803, 392728180939713131370669
Offset: 0

Views

Author

Peter Luschny, Mar 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] :=  Sum[2^(n - k)*Pochhammer[k/2, n - k], {k, 0, n}]; Array[a, 22, 0] (* Hugo Pfoertner, Mar 06 2024 *)

Formula

From Vaclav Kotesovec, Mar 12 2024: (Start)
Recurrence: (n-4)*a(n) = (4*n^2 - 24*n + 33)*a(n-1) - (2*n - 5)*(2*n^2 - 12*n + 17)*a(n-2) + (4*n^3 - 40*n^2 + 134*n - 151)*a(n-3) - (n-3)*(2*n - 7)*a(n-4).
a(n) ~ 2^(n - 1/2) * n^(n-1) / exp(n) * (1 + sqrt(Pi)/(2*sqrt(n))). (End)

A371077 Square array read by ascending antidiagonals: A(n, k) = 3^n*Pochhammer(k/3, n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 28, 10, 3, 1, 0, 280, 80, 18, 4, 1, 0, 3640, 880, 162, 28, 5, 1, 0, 58240, 12320, 1944, 280, 40, 6, 1, 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1, 0, 24344320, 4188800, 524880, 58240, 6160, 648, 70, 8, 1
Offset: 0

Views

Author

Werner Schulte and Peter Luschny, Mar 10 2024

Keywords

Examples

			The array starts:
  [0] 1,    1,     1,     1,     1,      1,      1,      1,      1, ...
  [1] 0,    1,     2,     3,     4,      5,      6,      7,      8, ...
  [2] 0,    4,    10,    18,    28,     40,     54,     70,     88, ...
  [3] 0,   28,    80,   162,   280,    440,    648,    910,   1232, ...
  [4] 0,  280,   880,  1944,  3640,   6160,   9720,  14560,  20944, ...
  [5] 0, 3640, 12320, 29160, 58240, 104720, 174960, 276640, 418880, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0,       1;
  [2] 0,       1,      1;
  [3] 0,       4,      2,     1;
  [4] 0,      28,     10,     3,    1;
  [5] 0,     280,     80,    18,    4,   1;
  [6] 0,    3640,    880,   162,   28,   5,  1;
  [7] 0,   58240,  12320,  1944,  280,  40,  6, 1;
  [8] 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1;
.
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1    1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2    3    4 ... |
    | 0   4   2        | * |     1 3 6 ... | = | 0   4  10   18   28 ... |
    | 0  28  24   6    |   |       1 4 ... |   | 0  28  80  162  280 ... |
    | 0 280 320 144 24 |   |         1 ... |   | 0 280 880 1944 3640 ... |
    | . . .            |   | . . .         |   | . . .                   |
		

Crossrefs

Family m^n*Pochhammer(k/m, n): A094587 (m=1), A370419 (m=2), this sequence (m=3), A370915 (m=4).
Cf. A303486 (main diagonal), A371079 (row sums of triangle), A371076, A371080.

Programs

  • Maple
    A := (n, k) -> 3^n*pochhammer(k/3, n):
    A := (n, k) -> local j; mul(3*j + k, j = 0..n-1):
    # Read by antidiagonals:
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    seq(lprint([n], seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the generating polynomials of the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-3)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..9)), n = 0..5);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 3*x)^(-k/3);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint([k], EGFcol(k, 8)), k = 0..6);
    # As a matrix product:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371076(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    Table[3^(n-k)*Pochhammer[k/3, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 14 2024 *)
  • SageMath
    def A(n, k): return 3**n * rising_factorial(k/3, n)
    def A(n, k): return (-3)**n * falling_factorial(-k/3, n)

Formula

A(n, k) = Product_{j=0..n-1} (3*j + k).
A(n, k) = A(n+1, k-3) / (k - 3) for k > 3.
A(n, k) = Sum_{j=0..n} Stirling1(n, j)*(-3)^(n - j)* k^j.
A(n, k) = k! * [x^k] (exp(x) * p(n, x)), where p(n, x) are the row polynomials of A371080.
E.g.f. of column k: (1 - 3*t)^(-k/3).
E.g.f. of row n: exp(x) * (Sum_{k=0..n} A371076(n, k) * x^k / (k!)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1/(1 - x/(1 - 3*t)^(1/3)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n /(n! * k!) = exp(x/(1 - 3*t)^(1/3)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371076, i.e., A(n, k) = Sum_{i=0..k} A371076(n, i) * binomial(k, i).

A370915 A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 06 2024

Keywords

Comments

The sequence of square arrays A(m, n, k) starts: A094587 (m = 1), A370419 (m = 2), A371077(m = 3), this array (m = 4).

Examples

			The array starts:
[0] 1,    1,     1,     1,      1,      1,      1,      1,      1, ...
[1] 0,    1,     2,     3,      4,      5,      6,      7,      8, ...
[2] 0,    5,    12,    21,     32,     45,     60,     77,     96, ...
[3] 0,   45,   120,   231,    384,    585,    840,   1155,   1536, ...
[4] 0,  585,  1680,  3465,   6144,   9945,  15120,  21945,  30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,      1;
[2] 0,      1,     1;
[3] 0,      5,     2,    1;
[4] 0,     45,    12,    3,   1;
[5] 0,    585,   120,   21,   4,  1;
[6] 0,   9945,  1680,  231,  32,  5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
		

Crossrefs

Similar square arrays: A094587, A370419, A371077.
Cf. A370913 (row sums of triangle), A371026.

Programs

  • Maple
    A := (n, k) -> 4^n*pochhammer(k/4, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..5);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
    U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 4**n * rising_factorial(k/4, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

A(n, k) = 4^n*Product_{j=0..n-1} (j + k/4).
A(n, k) = 4^n*Gamma(k/4 + n) / Gamma(k/4) for k >= 1.
The exponential generating function for column k is (1 - 4*x)^(-k/4). But much more is true: (1 - m*x)^(-k/m) are the exponential generating functions for the columns of the arrays A(m, n, k) = m^n*Pochhammer(k/m, n).
The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-4)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
In A370419 Werner Schulte pointed out how A371025 is related to the LU decomposition of A370419. Here the same procedure can be used and amounts to A = A371026 * transpose(binomial triangle), where '*' denotes matrix multiplication. See the Maple section for an implementation.

A370890 A(n, k) = 2^n*Pochhammer(k/2, floor((n+1)/2)). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 4, 3, 1, 0, 12, 16, 6, 4, 1, 0, 60, 32, 30, 8, 5, 1, 0, 120, 192, 60, 48, 10, 6, 1, 0, 840, 384, 420, 96, 70, 12, 7, 1, 0, 1680, 3072, 840, 768, 140, 96, 14, 8, 1, 0, 15120, 6144, 7560, 1536, 1260, 192, 126, 16, 9, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,  1,   1,   1,   1,    1,    1,    1,    1,    1, ...
[1] 0,  1,   2,   3,   4,    5,    6,    7,    8,    9, ...
[2] 0,  2,   4,   6,   8,   10,   12,   14,   16,   18, ...
[3] 0,  6,  16,  30,  48,   70,   96,  126,  160,  198, ...
[4] 0, 12,  32,  60,  96,  140,  192,  252,  320,  396, ...
[5] 0, 60, 192, 420, 768, 1260, 1920, 2772, 3840, 5148, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   2,   2,  1;
[4] 0,   6,   4,  3,  1;
[5] 0,  12,  16,  6,  4,  1;
[6] 0,  60,  32, 30,  8,  5, 1;
[7] 0, 120, 192, 60, 48, 10, 6, 1;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, iquo(n+1,2)):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A370890[n_, k_] := 2^n*Pochhammer[k/2, Floor[(n+1)/2]];
    Table[A370890[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    # Note the use of different kinds of division.
    def A(n, k): return 2**n * rising_factorial(k/2, (n+1)//2)
    for n in range(0, 9): print([A(n, k) for k in range(0, 9)])

A370912 a(n) = n*(n + 2)*(n + 4).

Original entry on oeis.org

0, 15, 48, 105, 192, 315, 480, 693, 960, 1287, 1680, 2145, 2688, 3315, 4032, 4845, 5760, 6783, 7920, 9177, 10560, 12075, 13728, 15525, 17472, 19575, 21840, 24273, 26880, 29667, 32640, 35805, 39168, 42735, 46512, 50505, 54720, 59163, 63840, 68757, 73920
Offset: 0

Views

Author

Peter Luschny, Mar 05 2024

Keywords

Crossrefs

Cases of A370419(n, k): A000012 (n=0), A001477 (n=1), A005563 (n=2), this sequence (n=3), A190577(n=4).

Programs

  • Maple
    a := n -> n*(n + 2)*(n + 4): seq(a(n), n = 0..40);
    # Using the generating function:
    gf := 3*x*(x^2 - 4*x + 5)/(x - 1)^4: ser := series(gf, x, 42):
    seq(coeff(ser, x, n), n = 0..40);
  • Mathematica
    Table[n(n+2)(n+4), {n,0,40}] (* or *) CoefficientList[Series[3*x*(x^2 - 4*x + 5)/(x - 1)^4,{x,0,40}],x] (* James C. McMahon, Mar 05 2024 *)

Formula

a(n) = 8*Pochhammer(n/2, 3).
a(n) = [x^n] 3*x*(x^2 - 4*x + 5)/(x - 1)^4.
a(n) = 3 * A077415(n + 2).
From Klaus Purath, Aug 02 2024: (Start)
a(n)^2 = A028347(n+2)^3 + 4*A028347(n+2)^2.
a(n+1) - a(n) = A211441(n+2).
a(n) = 3*Sum_{i = 1..n} A028387(i). (End)
E.g.f.: exp(x)*x*(15 + 9*x + x^2). - Stefano Spezia, Aug 18 2024
From Amiram Eldar, Oct 03 2024: (Start)
Sum_{n>=1} 1/a(n) = 11/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 5/96. (End)
Showing 1-5 of 5 results.