A371079
a(n) = Sum_{k=0..n} 3^(n - k)*Pochhammer(k/3, n - k). Row sums of A371077.
Original entry on oeis.org
1, 1, 2, 7, 42, 383, 4716, 72831, 1349302, 29123127, 717194888, 19837095511, 608717233346, 20518453925807, 753563361399012, 29948045451609743, 1280446573813600366, 58602977409168609351, 2858550564643752169312, 148037904246807129342247, 8111929349028033318115898
Offset: 0
-
a := n -> local k; add(3^(n - k)*pochhammer(k/3, n - k), k = 0..n):
seq(a(n), n = 0..20);
-
Table[Sum[3^(n-k) * Pochhammer[k/3, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 12 2024 *)
A370419
A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 8, 3, 1, 0, 105, 48, 15, 4, 1, 0, 945, 384, 105, 24, 5, 1, 0, 10395, 3840, 945, 192, 35, 6, 1, 0, 135135, 46080, 10395, 1920, 315, 48, 7, 1, 0, 2027025, 645120, 135135, 23040, 3465, 480, 63, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 3, 8, 15, 24, 35, 48, 63, 80, ...
[3] 0, 15, 48, 105, 192, 315, 480, 693, 960, ...
[4] 0, 105, 384, 945, 1920, 3465, 5760, 9009, 13440, ...
[5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 3, 2, 1;
[4] 0, 15, 8, 3, 1;
[5] 0, 105, 48, 15, 4, 1;
[6] 0, 945, 384, 105, 24, 5, 1;
.
From _Werner Schulte_, Mar 07 2024: (Start)
Illustrating the LU decomposition of A:
/ 1 \ / 1 1 1 1 1 ... \ / 1 1 1 1 1 ... \
| 0 1 | | 1 2 3 4 ... | | 0 1 2 3 4 ... |
| 0 3 2 | * | 1 3 6 ... | = | 0 3 8 15 24 ... |
| 0 15 18 6 | | 1 4 ... | | 0 15 48 105 192 ... |
| 0 105 174 108 24 | | 1 ... | | 0 105 384 945 1920 ... |
| . . . | | . . . | | . . . |. (End)
-
A := (n, k) -> 2^n*pochhammer(k/2, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..8);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the comment of Werner Schulte about the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371025(n - 1, k - 1)):
U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
MatrixMatrixMultiply(L, Transpose(U)); # Peter Luschny, Mar 08 2024
-
A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
-
def A(n, k): return 2**n * rising_factorial(k/2, n)
for n in range(6): print([A(n, k) for k in range(9)])
A370915
A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 5, 12, 21, 32, 45, 60, 77, 96, ...
[3] 0, 45, 120, 231, 384, 585, 840, 1155, 1536, ...
[4] 0, 585, 1680, 3465, 6144, 9945, 15120, 21945, 30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 5, 2, 1;
[4] 0, 45, 12, 3, 1;
[5] 0, 585, 120, 21, 4, 1;
[6] 0, 9945, 1680, 231, 32, 5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
Columns:
A000007,
A007696,
A001813,
A008545,
A047053,
A007696,
A000407,
A034176,
A052570 and
A034177,
A051617,
A051618,
A051619,
A051620.
-
A := (n, k) -> 4^n*pochhammer(k/4, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..5);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
MatrixMatrixMultiply(L, Transpose(U));
-
A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
-
def A(n, k): return 4**n * rising_factorial(k/4, n)
for n in range(6): print([A(n, k) for k in range(9)])
A371076
Triangle read by rows: T(n, k) = 3^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j) * Pochhammer(j/3, n).
Original entry on oeis.org
1, 0, 1, 0, 4, 2, 0, 28, 24, 6, 0, 280, 320, 144, 24, 0, 3640, 5040, 3120, 960, 120, 0, 58240, 92960, 71280, 30720, 7200, 720, 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040, 0, 24344320, 47653760, 48545280, 31127040, 13104000, 3548160, 564480, 40320
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 4, 2;
[3] 0, 28, 24, 6;
[4] 0, 280, 320, 144, 24;
[5] 0, 3640, 5040, 3120, 960, 120;
[6] 0, 58240, 92960, 71280, 30720, 7200, 720;
[7] 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040;
-
A371076 := (n, k) -> local j; 3^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/3, n), j = 0..k): seq(seq(A371076(n, k), k = 0..n), n = 0..9);
A371080
Triangle read by rows: BellMatrix(Product_{p in P(n)} p), where P(n) = {k : k mod m = 1 and 1 <= k <= m*(n + 1)} and m = 3.
Original entry on oeis.org
1, 0, 1, 0, 4, 1, 0, 28, 12, 1, 0, 280, 160, 24, 1, 0, 3640, 2520, 520, 40, 1, 0, 58240, 46480, 11880, 1280, 60, 1, 0, 1106560, 987840, 295960, 40040, 2660, 84, 1, 0, 24344320, 23826880, 8090880, 1296960, 109200, 4928, 112, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 4, 1;
[3] 0, 28, 12, 1;
[4] 0, 280, 160, 24, 1;
[5] 0, 3640, 2520, 520, 40, 1;
[6] 0, 58240, 46480, 11880, 1280, 60, 1;
[7] 0, 1106560, 987840, 295960, 40040, 2660, 84, 1;
-
a := n -> mul(select(k -> k mod 3 = 1, [seq(1..3*(n + 1))])): BellMatrix(a, 9);
# Alternative:
BellMatrix(n -> coeff(series((1/x)*hypergeom([1, 1/3], [], 3*x),x, 22), x, n), 9);
# Recurrence:
T := proc(n, k) option remember; if k = n then 1 elif k = 0 then 0 else
T(n - 1, k - 1) + (3*(n - 1) + k) * T(n - 1, k) fi end:
for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Mar 13 2024
-
T(n, k) = sum(j=k, n, 3^(n-j)*abs(stirling(n, j, 1))*stirling(j, k, 2)); \\ Seiichi Manyama, Apr 19 2025
Showing 1-5 of 5 results.
Comments