cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A371079 a(n) = Sum_{k=0..n} 3^(n - k)*Pochhammer(k/3, n - k). Row sums of A371077.

Original entry on oeis.org

1, 1, 2, 7, 42, 383, 4716, 72831, 1349302, 29123127, 717194888, 19837095511, 608717233346, 20518453925807, 753563361399012, 29948045451609743, 1280446573813600366, 58602977409168609351, 2858550564643752169312, 148037904246807129342247, 8111929349028033318115898
Offset: 0

Views

Author

Peter Luschny, Mar 12 2024

Keywords

Crossrefs

Programs

  • Maple
    a := n -> local k; add(3^(n - k)*pochhammer(k/3, n - k), k = 0..n):
    seq(a(n), n = 0..20);
  • Mathematica
    Table[Sum[3^(n-k) * Pochhammer[k/3, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 12 2024 *)

Formula

From Vaclav Kotesovec, Mar 12 2024: (Start)
Recurrence: (n-6)*(3*n - 14)*a(n) = (27*n^3 - 375*n^2 + 1690*n - 2465)*a(n-1) - (81*n^4 - 1458*n^3 + 9726*n^2 - 28519*n + 31035)*a(n-2) + (81*n^5 - 1836*n^4 + 16542*n^3 - 74055*n^2 + 164751*n - 145753)*a(n-3) - (81*n^5 - 1998*n^4 + 19557*n^3 - 94944*n^2 + 228592*n - 218342)*a(n-4) - 2*(3*n - 11)*(9*n^3 - 129*n^2 + 611*n - 957)*a(n-5) + 2*(n-5)*(3*n - 16)*(3*n - 14)*(3*n - 11)*a(n-6).
a(n) ~ sqrt(2*Pi) * 3^(n-1) * n^(n - 7/6) / (Gamma(1/3) * exp(n)) * (1 + Gamma(1/3)^2 / (2*Pi*sqrt(3)*n^(2/3))). (End)

A370419 A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 8, 3, 1, 0, 105, 48, 15, 4, 1, 0, 945, 384, 105, 24, 5, 1, 0, 10395, 3840, 945, 192, 35, 6, 1, 0, 135135, 46080, 10395, 1920, 315, 48, 7, 1, 0, 2027025, 645120, 135135, 23040, 3465, 480, 63, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 04 2024

Keywords

Examples

			The array starts:
[0] 1,   1,    1,     1,     1,     1,     1,      1,      1, ...
[1] 0,   1,    2,     3,     4,     5,     6,      7,      8, ...
[2] 0,   3,    8,    15,    24,    35,    48,     63,     80, ...
[3] 0,  15,   48,   105,   192,   315,   480,    693,    960, ...
[4] 0, 105,  384,   945,  1920,  3465,  5760,   9009,  13440, ...
[5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,   1;
[2] 0,   1,   1;
[3] 0,   3,   2,   1;
[4] 0,  15,   8,   3,  1;
[5] 0, 105,  48,  15,  4, 1;
[6] 0, 945, 384, 105, 24, 5, 1;
.
From _Werner Schulte_, Mar 07 2024: (Start)
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1   1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2   3    4 ... |
    | 0   3   2        | * |     1 3 6 ... | = | 0   3   8  15   24 ... |
    | 0  15  18   6    |   |       1 4 ... |   | 0  15  48 105  192 ... |
    | 0 105 174 108 24 |   |         1 ... |   | 0 105 384 945 1920 ... |
    | . . .            |   | . . .         |   | . . .                  |. (End)
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> 2^n*pochhammer(k/2, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..8);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the comment of Werner Schulte about the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371025(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));  #  Peter Luschny, Mar 08 2024
  • Mathematica
    A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
    Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 2**n * rising_factorial(k/2, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-2)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
From Werner Schulte, Mar 07 2024: (Start)
A(n, k) = Product_{i=1..n} (2*i - 2 + k).
E.g.f. of column k: Sum_{n>=0} A(n, k) * t^n / (n!) = (1/sqrt(1 - 2*t))^k.
A(n, k) = A(n+1, k-2) / (k - 2) for k > 2.
A(n, k) = Sum_{i=0..k-1} i! * A265649(n, i) * binomial(k-1, i) for k > 0.
E.g.f. of row n > 0: Sum_{k>=1} A(n, k) * x^k / (k!) = (Sum_{k=1..n} A035342(n, k) * x^k) * exp(x).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (k! * n!) = exp(x/sqrt(1 - 2*t)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1 / (1 - x/sqrt(1 - 2*t)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A035342(n, k) * k! for 1 <= k <= n and L(n, 0) = 0^n. Note that L(n, k) + L(n, k+1) = A265649(n, k) * k! for 0 <= k <= n. (End)

A370915 A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 06 2024

Keywords

Comments

The sequence of square arrays A(m, n, k) starts: A094587 (m = 1), A370419 (m = 2), A371077(m = 3), this array (m = 4).

Examples

			The array starts:
[0] 1,    1,     1,     1,      1,      1,      1,      1,      1, ...
[1] 0,    1,     2,     3,      4,      5,      6,      7,      8, ...
[2] 0,    5,    12,    21,     32,     45,     60,     77,     96, ...
[3] 0,   45,   120,   231,    384,    585,    840,   1155,   1536, ...
[4] 0,  585,  1680,  3465,   6144,   9945,  15120,  21945,  30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,      1;
[2] 0,      1,     1;
[3] 0,      5,     2,    1;
[4] 0,     45,    12,    3,   1;
[5] 0,    585,   120,   21,   4,  1;
[6] 0,   9945,  1680,  231,  32,  5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
		

Crossrefs

Similar square arrays: A094587, A370419, A371077.
Cf. A370913 (row sums of triangle), A371026.

Programs

  • Maple
    A := (n, k) -> 4^n*pochhammer(k/4, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..5);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
    U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 4**n * rising_factorial(k/4, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

A(n, k) = 4^n*Product_{j=0..n-1} (j + k/4).
A(n, k) = 4^n*Gamma(k/4 + n) / Gamma(k/4) for k >= 1.
The exponential generating function for column k is (1 - 4*x)^(-k/4). But much more is true: (1 - m*x)^(-k/m) are the exponential generating functions for the columns of the arrays A(m, n, k) = m^n*Pochhammer(k/m, n).
The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-4)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
In A370419 Werner Schulte pointed out how A371025 is related to the LU decomposition of A370419. Here the same procedure can be used and amounts to A = A371026 * transpose(binomial triangle), where '*' denotes matrix multiplication. See the Maple section for an implementation.

A371076 Triangle read by rows: T(n, k) = 3^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j) * Pochhammer(j/3, n).

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 28, 24, 6, 0, 280, 320, 144, 24, 0, 3640, 5040, 3120, 960, 120, 0, 58240, 92960, 71280, 30720, 7200, 720, 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040, 0, 24344320, 47653760, 48545280, 31127040, 13104000, 3548160, 564480, 40320
Offset: 0

Views

Author

Peter Luschny, Mar 10 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,       1;
[2] 0,       4,       2;
[3] 0,      28,      24,       6;
[4] 0,     280,     320,     144,     24;
[5] 0,    3640,    5040,    3120,    960,    120;
[6] 0,   58240,   92960,   71280,  30720,   7200,   720;
[7] 0, 1106560, 1975680, 1775760, 960960, 319200, 60480, 5040;
		

Crossrefs

Cf. A371077, A007559 (column 1), A000142 (main diagonal), A052609 (subdiagonal).

Programs

  • Maple
    A371076 := (n, k) -> local j; 3^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/3, n), j = 0..k): seq(seq(A371076(n, k), k = 0..n), n = 0..9);

Formula

T(n, k) = k * T(n-1, k-1) + (3*n - 3 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - Werner Schulte, Mar 13 2024

A371080 Triangle read by rows: BellMatrix(Product_{p in P(n)} p), where P(n) = {k : k mod m = 1 and 1 <= k <= m*(n + 1)} and m = 3.

Original entry on oeis.org

1, 0, 1, 0, 4, 1, 0, 28, 12, 1, 0, 280, 160, 24, 1, 0, 3640, 2520, 520, 40, 1, 0, 58240, 46480, 11880, 1280, 60, 1, 0, 1106560, 987840, 295960, 40040, 2660, 84, 1, 0, 24344320, 23826880, 8090880, 1296960, 109200, 4928, 112, 1
Offset: 0

Views

Author

Peter Luschny, Mar 12 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,       1;
[2] 0,       4,      1;
[3] 0,      28,     12,      1;
[4] 0,     280,    160,     24,     1;
[5] 0,    3640,   2520,    520,    40,    1;
[6] 0,   58240,  46480,  11880,  1280,   60,  1;
[7] 0, 1106560, 987840, 295960, 40040, 2660, 84, 1;
		

Crossrefs

Programs

  • Maple
    a := n -> mul(select(k -> k mod 3 = 1, [seq(1..3*(n + 1))])): BellMatrix(a, 9);
    # Alternative:
    BellMatrix(n -> coeff(series((1/x)*hypergeom([1, 1/3], [], 3*x),x, 22), x, n), 9);
    # Recurrence:
    T := proc(n, k) option remember; if k = n then 1 elif k = 0 then 0 else
    T(n - 1, k - 1) + (3*(n - 1) + k) * T(n - 1, k) fi end:
    for n from 0 to 7 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Mar 13 2024
  • PARI
    T(n, k) = sum(j=k, n, 3^(n-j)*abs(stirling(n, j, 1))*stirling(j, k, 2)); \\ Seiichi Manyama, Apr 19 2025

Formula

T(n, k) = BellMatrix([x^n] hypergeom2F0([1, 1/3], [], 3*x) / x).
T(n, k) = A371076(n, k) / k!.
From Werner Schulte, Mar 13 2024: (Start)
T(n, k) = (Sum_{i=0..k} (-1)^(k-i) * binomial(k, i) * Product_{j=0..n-1} (3*j + i)) / (k!).
T(n, k) = T(n-1, k-1) + (3*(n - 1) + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0. (End)
From Seiichi Manyama, Apr 19 2025: (Start)
T(n,k) = Sum_{j=k..n} 3^(n-j) * |Stirling1(n,j)| * Stirling2(j,k).
E.g.f. of column k (with leading zeros): (1/(1 - 3*x)^(1/3) - 1)^k / k!. (End)
Showing 1-5 of 5 results.