A330354
Expansion of e.g.f. Sum_{k>=1} log(1 + x)^k / (k * (1 - log(1 + x)^k)).
Original entry on oeis.org
1, 2, 1, 21, -122, 1752, -21730, 309166, -4521032, 70344768, -1173530712, 21642745704, -448130571696, 10352684535840, -260101132095888, 6921279885508848, -191813249398678272, 5502934340821289088, -163695952380982280832, 5078687529186002247552
Offset: 1
Cf.
A000041,
A000203,
A002743,
A008275,
A038048,
A089064,
A306042,
A330351,
A330352,
A330353,
A330494.
-
nmax = 20; CoefficientList[Series[Sum[Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A330351
Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.
Original entry on oeis.org
1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1
Cf.
A000005,
A000629,
A002746,
A008277,
A028342,
A308554,
A318249,
A330352,
A330353,
A330354,
A330445.
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A330352
Expansion of e.g.f. -Sum_{k>=1} log(1 - log(1 + x)^k) / k.
Original entry on oeis.org
1, 1, 0, 10, -68, 818, -9782, 130730, -1835752, 27408672, -438578616, 7697802264, -150743052528, 3293454634416, -78787556904864, 2014008113598432, -54001416897306240, 1504891127666322048, -43527807706621236480, 1311515508480252542208
Offset: 1
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - Log[1 + x]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A330494
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * (k-1)! * sigma(k), where sigma = A000203.
Original entry on oeis.org
1, 4, 19, 129, 1018, 9912, 111074, 1416398, 20295208, 323437728, 5657339928, 107765338920, 2223272444976, 49399021063584, 1175549092374672, 29822113966614768, 803485297880792064, 22917198585269729664, 689927737384840662144, 21861972842959846530432
Offset: 1
-
Table[Sum[(-1)^(n-k) * StirlingS1[n, k] * (k-1)! * DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1/(1 - x)]^k/(k (1 - Log[1/(1 - x)]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
-
a(n) = sum(k=1, n, (-1)^(n-k)*stirling(n, k, 1)*(k-1)!*sigma(k)); \\ Michel Marcus, Dec 16 2019
A330449
Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)^2).
Original entry on oeis.org
1, 6, 36, 282, 2460, 25506, 299796, 3921882, 56977740, 913248786, 15917884356, 299358495882, 6066180049020, 131932872768066, 3057940695635316, 75151035318996282, 1954299203147952300, 53684552455571903346, 1553161560008013680676, 47162101103528811791082
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[2, k], {k, 1, n}], {n, 1, 20}]
A330387
Expansion of e.g.f. Sum_{k>=1} (-1)^(k + 1) * (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 2, 12, 62, 420, 3782, 40572, 463262, 5708820, 80773622, 1319927532, 23675250062, 447145154820, 8830952572262, 185694817024092, 4246473212654462, 105754322266866420, 2811068529133151702, 78039884046777282252, 2243558766132057764462
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[(-1)^(k + 1) (Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! Sum[Mod[d, 2] d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1 + (Exp[x] - 1)^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Dec 15 2019 *)
A330444
a(n) = Sum_{k=1..n} Stirling2(n,k) * (k-1)! * phi(k), where phi = A000010.
Original entry on oeis.org
1, 2, 8, 44, 332, 2852, 28268, 330164, 4371452, 62867492, 980090828, 16792404884, 316446118172, 6484254233732, 142335512881388, 3299266086185204, 80092968046706492, 2040940536907449572, 55097942635383719948, 1586719679112182359124
Offset: 1
-
Table[Sum[StirlingS2[n, k] * (k-1)! * EulerPhi[k], {k, 1, n}], {n, 1, 20}]
-
a(n) = sum(k=1, n, stirling(n, k, 2)*(k-1)!*eulerphi(k)); \\ Michel Marcus, Dec 15 2019
Showing 1-7 of 7 results.