A330353
Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 4, 18, 112, 810, 7144, 73458, 850672, 11069370, 161190904, 2575237698, 44571447232, 836188737930, 16970931765064, 368985732635538, 8524290269083792, 208874053200038490, 5428866923032585624, 149250273758730282978, 4318265042184721248352
Offset: 1
Cf.
A000041,
A000203,
A000629,
A002745,
A008277,
A038048,
A167137,
A308555,
A330351,
A330352,
A330354.
-
nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A330351
Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.
Original entry on oeis.org
1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1
Cf.
A000005,
A000629,
A002746,
A008277,
A028342,
A308554,
A318249,
A330352,
A330353,
A330354,
A330445.
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A330352
Expansion of e.g.f. -Sum_{k>=1} log(1 - log(1 + x)^k) / k.
Original entry on oeis.org
1, 1, 0, 10, -68, 818, -9782, 130730, -1835752, 27408672, -438578616, 7697802264, -150743052528, 3293454634416, -78787556904864, 2014008113598432, -54001416897306240, 1504891127666322048, -43527807706621236480, 1311515508480252542208
Offset: 1
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - Log[1 + x]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A330494
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * (k-1)! * sigma(k), where sigma = A000203.
Original entry on oeis.org
1, 4, 19, 129, 1018, 9912, 111074, 1416398, 20295208, 323437728, 5657339928, 107765338920, 2223272444976, 49399021063584, 1175549092374672, 29822113966614768, 803485297880792064, 22917198585269729664, 689927737384840662144, 21861972842959846530432
Offset: 1
-
Table[Sum[(-1)^(n-k) * StirlingS1[n, k] * (k-1)! * DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1/(1 - x)]^k/(k (1 - Log[1/(1 - x)]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
-
a(n) = sum(k=1, n, (-1)^(n-k)*stirling(n, k, 1)*(k-1)!*sigma(k)); \\ Michel Marcus, Dec 16 2019
A330388
Expansion of e.g.f. Sum_{k>=1} (-1)^(k + 1) * log(1 + x)^k / (k * (1 - log(1 + x)^k)).
Original entry on oeis.org
1, 0, 7, -37, 338, -2816, 28418, -340334, 5015080, -84244704, 1536606168, -29753884392, 609895549872, -13243687082016, 305507366834832, -7523621131117296, 198844500026698752, -5649686902983730560, 171839087043420258432, -5545292300345590210944
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[(-1)^(k + 1) Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! Sum[Mod[d, 2] d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1 + Log[1 + x]^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Dec 15 2019 *)
A330450
Expansion of e.g.f. Sum_{k>=1} log(1 + x)^k / (k * (1 - log(1 + x)^k)^2).
Original entry on oeis.org
1, 4, 7, 55, -162, 4100, -49030, 779914, -11928008, 198650880, -3538477560, 70414760136, -1571134087824, 38788172175072, -1028732373217200, 28631225505910224, -826097667884640768, 24664145505337921920, -765245501125015575168, 24841409653689047496576
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[Log[1 + x]^k/(k (1 - Log[1 + x]^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[2, k], {k, 1, n}], {n, 1, 20}]
A330499
Expansion of e.g.f. Sum_{k>=1} log(1 + log(1/(1 - x))^k).
Original entry on oeis.org
0, 1, 2, 13, 71, 558, 5344, 60926, 766898, 10759096, 168848256, 2947203048, 56368708824, 1165246323408, 25802649445728, 609940593443952, 15377212949988624, 412827548455415040, 11764577341464710016, 354392697960438122880, 11237993013428254071936
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[Log[1+Log[1/(1-x)]^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
Showing 1-7 of 7 results.