A330353
Expansion of e.g.f. Sum_{k>=1} (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 4, 18, 112, 810, 7144, 73458, 850672, 11069370, 161190904, 2575237698, 44571447232, 836188737930, 16970931765064, 368985732635538, 8524290269083792, 208874053200038490, 5428866923032585624, 149250273758730282978, 4318265042184721248352
Offset: 1
Cf.
A000041,
A000203,
A000629,
A002745,
A008277,
A038048,
A167137,
A308555,
A330351,
A330352,
A330354.
-
nmax = 20; CoefficientList[Series[Sum[(Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A330354
Expansion of e.g.f. Sum_{k>=1} log(1 + x)^k / (k * (1 - log(1 + x)^k)).
Original entry on oeis.org
1, 2, 1, 21, -122, 1752, -21730, 309166, -4521032, 70344768, -1173530712, 21642745704, -448130571696, 10352684535840, -260101132095888, 6921279885508848, -191813249398678272, 5502934340821289088, -163695952380982280832, 5078687529186002247552
Offset: 1
Cf.
A000041,
A000203,
A002743,
A008275,
A038048,
A089064,
A306042,
A330351,
A330352,
A330353,
A330494.
-
nmax = 20; CoefficientList[Series[Sum[Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[1, k], {k, 1, n}], {n, 1, 20}]
A330352
Expansion of e.g.f. -Sum_{k>=1} log(1 - log(1 + x)^k) / k.
Original entry on oeis.org
1, 1, 0, 10, -68, 818, -9782, 130730, -1835752, 27408672, -438578616, 7697802264, -150743052528, 3293454634416, -78787556904864, 2014008113598432, -54001416897306240, 1504891127666322048, -43527807706621236480, 1311515508480252542208
Offset: 1
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - Log[1 + x]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A330493
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * (k-1)! * tau(k), where tau = A000005.
Original entry on oeis.org
1, 3, 12, 70, 492, 4298, 43894, 514666, 6830888, 101473632, 1664125944, 29858266392, 582481147440, 12281821373040, 278257595964576, 6739505703156192, 173785740554811264, 4754455742416944000, 137571331202872821504, 4197696814883284962048
Offset: 1
-
Table[Sum[(-1)^(n-k) * StirlingS1[n, k] * (k-1)! * DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[-Sum[Log[1 - Log[1/(1 - x)]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]
-
a(n) = sum(k=1, n, (-1)^(n-k)*stirling(n, k, 1)*(k-1)!*numdiv(k)); \\ Michel Marcus, Dec 16 2019
A330445
Expansion of e.g.f.: Sum_{k>=1} log(1 + (exp(x) - 1)^k)/k.
Original entry on oeis.org
0, 1, 1, 5, 19, 89, 691, 7265, 74299, 722489, 8224291, 130439825, 2456898379, 45287950889, 781106871091, 13479917085185, 268959501687259, 6688186010251289, 187628967639969091, 5285049770439071345, 144061583071243096939
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[Log[1 + (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
nmax = 20; CoefficientList[Series[Log[Product[(1 + (Exp[x] - 1)^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
A330444
a(n) = Sum_{k=1..n} Stirling2(n,k) * (k-1)! * phi(k), where phi = A000010.
Original entry on oeis.org
1, 2, 8, 44, 332, 2852, 28268, 330164, 4371452, 62867492, 980090828, 16792404884, 316446118172, 6484254233732, 142335512881388, 3299266086185204, 80092968046706492, 2040940536907449572, 55097942635383719948, 1586719679112182359124
Offset: 1
-
Table[Sum[StirlingS2[n, k] * (k-1)! * EulerPhi[k], {k, 1, n}], {n, 1, 20}]
-
a(n) = sum(k=1, n, stirling(n, k, 2)*(k-1)!*eulerphi(k)); \\ Michel Marcus, Dec 15 2019
Showing 1-6 of 6 results.