A038048
a(n) = (n-1)! * sigma(n).
Original entry on oeis.org
1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1
a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).
- T. D. Noe, Table of n, a(n) for n = 1..100
- Xiaojun Liu, Motohico Mulase, Adam Sorkin, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, arXiv:1304.0015 [math.AG], 2013.
- H. Ochiai, Counting functions for branched covers of elliptic curves and quasi-modular forms, arXiv:math-ph/9909023, 1999.
-
a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # Emeric Deutsch, Jul 24 2005
-
a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* Jean-François Alcover, Mar 23 2011 *)
-
a(n)=(n-1)!*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
-
A038048 = lambda n: factorial(n-1)*sigma(n,1)
[A038048(n) for n in (1..20)] # Peter Luschny, Jan 19 2016
A293840
E.g.f.: exp(Sum_{n>=1} A000009(n)*x^n).
Original entry on oeis.org
1, 1, 3, 19, 121, 1041, 10651, 121843, 1575729, 22970881, 366805171, 6365365491, 120044573353, 2430782532049, 52677233993931, 1217023986185491, 29799465317716321, 771272544315151233, 21044341084622337379, 603173026772647474771
Offset: 0
-
nmax = 20; CoefficientList[Series[E^Sum[PartitionsQ[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
A294212
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} 1/(1-x^j) - 1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 5, 13, 0, 1, 1, 5, 25, 73, 0, 1, 1, 5, 31, 193, 501, 0, 1, 1, 5, 31, 241, 1601, 4051, 0, 1, 1, 5, 31, 265, 2261, 16741, 37633, 0, 1, 1, 5, 31, 265, 2501, 25501, 190345, 394353, 0, 1, 1, 5, 31, 265, 2621, 29461, 319915, 2509025
Offset: 0
Square array B(j,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, ...
0, 1, 2, 3, 3, ...
0, 1, 3, 4, 5, ...
0, 1, 3, 5, 6, ...
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, ...
0, 3, 5, 5, 5, ...
0, 13, 25, 31, 31, ...
0, 73, 193, 241, 265, ...
0, 501, 1601, 2261, 2501, ...
A215915
E.g.f.: exp( Sum_{n>=1} A000041(n)*x^n/n ), where A000041(n) is the number of partitions of n.
Original entry on oeis.org
1, 1, 3, 13, 79, 579, 5209, 53347, 628257, 8223481, 119473291, 1893056781, 32677209103, 606930554923, 12109058077809, 257638964244739, 5830359141736129, 139638723615395697, 3531794326401241747, 93977250969358226701, 2625647922067519041231, 76809884197769914248211
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 79*x^4/4! + 579*x^5/5! + 5209*x^6/6! + ...
such that log(A(x)) = x + 2*x^2/2 + 3*x^3/3 + 5*x^4/4 + 7*x^5/5 + 11*x^6/6 + 15*x^7/7 + 22*x^8/8 + ... + A000041(n)*x^n/n + ...
-
nmax = 20; CoefficientList[Series[E^Sum[PartitionsP[k]*x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
-
a(n):=if n=0 then 1 else (n-1)!*sum(num_partitions(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1); /* Vladimir Kruchinin, Feb 27 2015 */
-
{a(n)=n!*polcoeff(exp(sum(m=1,n+1,numbpart(m)*x^m/m+x*O(x^n))),n)}
for(n=0,31,print1(a(n),", "))
A300511
Expansion of e.g.f. exp(Sum_{k>=1} p(k)*x^k/k!), where p(k) = number of partitions of k (A000041).
Original entry on oeis.org
1, 1, 3, 10, 42, 203, 1119, 6841, 45916, 334414, 2622256, 21984668, 195991611, 1849158088, 18390563792, 192128761836, 2102097270199, 24022460183508, 286060559298908, 3542047217686560, 45517563689858955, 606014811356799054, 8346153294214800894, 118731713512110007282
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 10*x^3/3! + 42*x^4/4! + 203*x^5/5! + 1119*x^6/6! + 6841*x^7/7! + 45916*x^8/8! + ..
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
binomial(n-1, j-1)*combinat[numbpart](j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 07 2018
-
nmax = 23; CoefficientList[Series[Exp[Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[PartitionsP[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
A293731
E.g.f.: exp(Sum_{n>=1} n*A000041(n)*x^n), where A000041(n) is the number of partitions of n.
Original entry on oeis.org
1, 1, 9, 79, 937, 12501, 204361, 3703099, 76460049, 1732292137, 43118784361, 1161659388231, 33771008443129, 1050438417598909, 34839221780655657, 1225699869182970931, 45592202322141065761, 1786608566424333658449, 73553912374465725486409
Offset: 0
a(5) = 4! * (1^2*1*a(4)/4! + 2^2*2*a(3)/3! + 3^2*3*a(2)/2! + 4^2*5*a(1)/1! + 5^2*7*a(0)/0!) = 12501.
-
nmax = 20; CoefficientList[Series[E^Sum[k*PartitionsP[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
A294261
E.g.f.: exp(Sum_{n>=1} A081362(n)*x^n).
Original entry on oeis.org
1, -1, 1, -7, 49, -301, 2281, -21211, 260737, -3254329, 41086801, -589336111, 9851907121, -170708882917, 3060177746809, -60544788499651, 1298663388032641, -28777111728560881, 665551703689032097, -16413980708818538839, 428253175770218766001
Offset: 0
A293796
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} j^(k-1)*A000041(j)*x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 9, 31, 79, 1, 1, 17, 79, 265, 579, 1, 1, 33, 211, 937, 2621, 5209, 1, 1, 65, 583, 3433, 12501, 31621, 53347, 1, 1, 129, 1651, 12889, 62141, 204361, 426595, 628257, 1, 1, 257, 4759, 49225, 319461, 1395121, 3703099
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, ...
13, 31, 79, 211, 583, ...
79, 265, 937, 3433, 12889, ...
579, 2621, 12501, 62141, 319461, ...
A380171
Numerators of coefficients in expansion of exp(-1 + 1 / Product_{k>=1} (1 - x^k)).
Original entry on oeis.org
1, 1, 5, 31, 265, 2621, 31621, 85319, 6574961, 22334789, 2092318021, 42552808871, 187499032037, 22150499622421, 22390616112461, 15039597200385451, 428293292251548001, 103005657594642373, 407547173842501629061, 2708181047424714819491, 36245898714951203790797
Offset: 0
1, 1, 5/2, 31/6, 265/24, 2621/120, 31621/720, 85319/1008, 6574961/40320, ...
-
nmax = 20; CoefficientList[Series[Exp[-1 + 1/Product[1 - x^k, {k, 1, nmax}]], {x, 0, nmax}], x] // Numerator
b[0] = 1; b[n_] := b[n] = (1/n) Sum[k PartitionsP[k] b[n - k], {k, 1, n}]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 20}]
A380271
Denominators of coefficients in expansion of exp(-1 + 1 / Product_{k>=1} (1 - x^k)).
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 1008, 40320, 72576, 3628800, 39916800, 95800320, 6227020800, 3487131648, 1307674368000, 20922789888000, 2845499424768, 6402373705728000, 24329020081766400, 187146308321280000, 51090942171709440000, 224800145555521536000, 25852016738884976640000
Offset: 0
1, 1, 5/2, 31/6, 265/24, 2621/120, 31621/720, 85319/1008, 6574961/40320, ...
-
nmax = 23; CoefficientList[Series[Exp[-1 + 1/Product[1 - x^k, {k, 1, nmax}]], {x, 0, nmax}], x] // Denominator
b[0] = 1; b[n_] := b[n] = (1/n) Sum[k PartitionsP[k] b[n - k], {k, 1, n}]; a[n_] := Denominator[b[n]]; Table[a[n], {n, 0, 23}]
Showing 1-10 of 13 results.
Comments