cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A038048 a(n) = (n-1)! * sigma(n).

Original entry on oeis.org

1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1

Views

Author

Keywords

Comments

sigma(n) = A000203(n) is the sum of the divisors of n.
Number of labeled regular octopi (or octopuses, cycles of ordered sets all the same size).
Left edge of triangle in A008298.

Examples

			a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} n!/d. - Amarnath Murthy, Jul 24 2005
a(p) = (p+1)*(p-1)! if p is a prime. - Amarnath Murthy, Jul 24 2005
E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - N. J. A. Sloane
E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - Vladeta Jovovic, Mar 27 2005
a(n) = A000142(n-1)*A000203(n). - Omar E. Pol, Feb 26 2014

Extensions

More terms from Emeric Deutsch, Jul 24 2005
Edited by N. J. A. Sloane, May 12 2008 at the suggestion of Joerg Arndt

A293840 E.g.f.: exp(Sum_{n>=1} A000009(n)*x^n).

Original entry on oeis.org

1, 1, 3, 19, 121, 1041, 10651, 121843, 1575729, 22970881, 366805171, 6365365491, 120044573353, 2430782532049, 52677233993931, 1217023986185491, 29799465317716321, 771272544315151233, 21044341084622337379, 603173026772647474771
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2017

Keywords

Comments

From Peter Bala, Mar 28 2022: (Start)
The congruence a(n+k) == a(n) (mod k) holds for all n and k.
It follows that the sequence obtained by taking a(n) modulo a fixed positive integer k is periodic with exact period dividing k. For example, the sequence taken modulo 10 becomes [1, 1, 3, 9, 1, 1, 1, 3, 9, 1, ...], a purely periodic sequence with exact period 5.
3 divides a(3*n+2); 9 divides a(9*n+8); 11 divides a(11*n+4); 19 divides a(19*n+3). (End)

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^Sum[PartitionsQ[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000009(k)*a(n-k)/(n-k)! for n > 0.

A294212 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} 1/(1-x^j) - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 1, 5, 13, 0, 1, 1, 5, 25, 73, 0, 1, 1, 5, 31, 193, 501, 0, 1, 1, 5, 31, 241, 1601, 4051, 0, 1, 1, 5, 31, 265, 2261, 16741, 37633, 0, 1, 1, 5, 31, 265, 2501, 25501, 190345, 394353, 0, 1, 1, 5, 31, 265, 2621, 29461, 319915, 2509025
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2017

Keywords

Examples

			Square array B(j,k) begins:
   1,   1,    1,    1,    1, ...
   0,   1,    1,    1,    1, ...
   0,   1,    2,    2,    2, ...
   0,   1,    2,    3,    3, ...
   0,   1,    3,    4,    5, ...
   0,   1,    3,    5,    6, ...
Square array A(n,k) begins:
   1,   1,    1,    1,    1, ...
   0,   1,    1,    1,    1, ...
   0,   3,    5,    5,    5, ...
   0,  13,   25,   31,   31, ...
   0,  73,  193,  241,  265, ...
   0, 501, 1601, 2261, 2501, ...
		

Crossrefs

Columns k=0..5 give A000007, A000262, A294213, A294214, A294215, A294216.
Rows n=0 gives A000012.
Main diagonal gives A058892.

Formula

B(j,k) is the coefficient of Product_{i=1..k} 1/(1-x^i).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0.

A215915 E.g.f.: exp( Sum_{n>=1} A000041(n)*x^n/n ), where A000041(n) is the number of partitions of n.

Original entry on oeis.org

1, 1, 3, 13, 79, 579, 5209, 53347, 628257, 8223481, 119473291, 1893056781, 32677209103, 606930554923, 12109058077809, 257638964244739, 5830359141736129, 139638723615395697, 3531794326401241747, 93977250969358226701, 2625647922067519041231, 76809884197769914248211
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2012

Keywords

Comments

Note that exp( Sum_{k>=1} A183610(n,k)*x^k/k ) is an integer series for row n>=1; the partition numbers, which forms row 0 of table A183610, is the exception.

Examples

			G.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 79*x^4/4! + 579*x^5/5! + 5209*x^6/6! +  ...
such that log(A(x)) = x + 2*x^2/2 + 3*x^3/3 + 5*x^4/4 + 7*x^5/5 + 11*x^6/6 + 15*x^7/7 + 22*x^8/8 + ... + A000041(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^Sum[PartitionsP[k]*x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
  • Maxima
    a(n):=if n=0 then 1 else (n-1)!*sum(num_partitions(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1); /* Vladimir Kruchinin, Feb 27 2015 */
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n+1,numbpart(m)*x^m/m+x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))
    

Formula

a(n) = (n-1)!*sum(p(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1), a(0)=1, where p(i) is the number of partitions of n. - Vladimir Kruchinin, Feb 27 2015

A300511 Expansion of e.g.f. exp(Sum_{k>=1} p(k)*x^k/k!), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 1, 3, 10, 42, 203, 1119, 6841, 45916, 334414, 2622256, 21984668, 195991611, 1849158088, 18390563792, 192128761836, 2102097270199, 24022460183508, 286060559298908, 3542047217686560, 45517563689858955, 606014811356799054, 8346153294214800894, 118731713512110007282
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 07 2018

Keywords

Comments

Exponential transform of A000041.

Examples

			E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 10*x^3/3! + 42*x^4/4! + 203*x^5/5! + 1119*x^6/6! + 6841*x^7/7! + 45916*x^8/8! + ..
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
          binomial(n-1, j-1)*combinat[numbpart](j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 07 2018
  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[PartitionsP[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]

Formula

E.g.f.: exp(Sum_{k>=1} A000041(k)*x^k/k!).

A293731 E.g.f.: exp(Sum_{n>=1} n*A000041(n)*x^n), where A000041(n) is the number of partitions of n.

Original entry on oeis.org

1, 1, 9, 79, 937, 12501, 204361, 3703099, 76460049, 1732292137, 43118784361, 1161659388231, 33771008443129, 1050438417598909, 34839221780655657, 1225699869182970931, 45592202322141065761, 1786608566424333658449, 73553912374465725486409
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2017

Keywords

Examples

			a(5) = 4! * (1^2*1*a(4)/4! + 2^2*2*a(3)/3! + 3^2*3*a(2)/2! + 4^2*5*a(1)/1! + 5^2*7*a(0)/0!) = 12501.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^Sum[k*PartitionsP[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k^2*A000041(k)*a(n-k)/(n-k)! for n > 0.

A294261 E.g.f.: exp(Sum_{n>=1} A081362(n)*x^n).

Original entry on oeis.org

1, -1, 1, -7, 49, -301, 2281, -21211, 260737, -3254329, 41086801, -589336111, 9851907121, -170708882917, 3060177746809, -60544788499651, 1298663388032641, -28777111728560881, 665551703689032097, -16413980708818538839, 428253175770218766001
Offset: 0

Views

Author

Seiichi Manyama, Oct 26 2017

Keywords

Crossrefs

Main diagonal of A294289.

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A081362(k)*a(n-k)/(n-k)! for n > 0.

A293796 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} j^(k-1)*A000041(j)*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 9, 31, 79, 1, 1, 17, 79, 265, 579, 1, 1, 33, 211, 937, 2621, 5209, 1, 1, 65, 583, 3433, 12501, 31621, 53347, 1, 1, 129, 1651, 12889, 62141, 204361, 426595, 628257, 1, 1, 257, 4759, 49225, 319461, 1395121, 3703099
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2017

Keywords

Examples

			Square array begins:
     1,    1,     1,     1,      1, ...
     1,    1,     1,     1,      1, ...
     3,    5,     9,    17,     33, ...
    13,   31,    79,   211,    583, ...
    79,  265,   937,  3433,  12889, ...
   579, 2621, 12501, 62141, 319461, ...
		

Crossrefs

Columns k=0..2 give A215915, A058892, A293731.
Rows n=0-1 give A000012.

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j^k*A000041(j)*A(n-j,k)/(n-j)! for n > 0.

A380171 Numerators of coefficients in expansion of exp(-1 + 1 / Product_{k>=1} (1 - x^k)).

Original entry on oeis.org

1, 1, 5, 31, 265, 2621, 31621, 85319, 6574961, 22334789, 2092318021, 42552808871, 187499032037, 22150499622421, 22390616112461, 15039597200385451, 428293292251548001, 103005657594642373, 407547173842501629061, 2708181047424714819491, 36245898714951203790797
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 14 2025

Keywords

Examples

			1, 1, 5/2, 31/6, 265/24, 2621/120, 31621/720, 85319/1008, 6574961/40320, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[-1 + 1/Product[1 - x^k, {k, 1, nmax}]], {x, 0, nmax}], x] // Numerator
    b[0] = 1; b[n_] := b[n] = (1/n) Sum[k PartitionsP[k] b[n - k], {k, 1, n}]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 20}]

Formula

b(0) = 1, b(n) = (1/n) * Sum_{k=1..n} k * A000041(k) * b(n-k), a(n) = numerator of b(n).

A380271 Denominators of coefficients in expansion of exp(-1 + 1 / Product_{k>=1} (1 - x^k)).

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 1008, 40320, 72576, 3628800, 39916800, 95800320, 6227020800, 3487131648, 1307674368000, 20922789888000, 2845499424768, 6402373705728000, 24329020081766400, 187146308321280000, 51090942171709440000, 224800145555521536000, 25852016738884976640000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2025

Keywords

Examples

			1, 1, 5/2, 31/6, 265/24, 2621/120, 31621/720, 85319/1008, 6574961/40320, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[-1 + 1/Product[1 - x^k, {k, 1, nmax}]], {x, 0, nmax}], x] // Denominator
    b[0] = 1; b[n_] := b[n] = (1/n) Sum[k PartitionsP[k] b[n - k], {k, 1, n}]; a[n_] := Denominator[b[n]]; Table[a[n], {n, 0, 23}]

Formula

b(0) = 1, b(n) = (1/n) * Sum_{k=1..n} k * A000041(k) * b(n-k), a(n) = denominator of b(n).
Showing 1-10 of 13 results. Next