cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300512 Expansion of e.g.f. log(Sum_{k>=0} p(k)*x^k/k!), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

0, 1, 1, -1, -1, 6, -1, -77, 203, 1344, -10692, -15862, 579611, -1518768, -32884753, 283168220, 1550435633, -38615194078, 44538307279, 4920513118440, -39485852954288, -546206846420721, 11322395643617278, 23746787652752639, -2713550731461618505, 17064642256532964421
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 07 2018

Keywords

Comments

Logarithmic transform of A000041.

Examples

			E.g.f.: A(x) = x/1! + x^2/2! - x^3/3! - x^4/4! + 6*x^5/5! - x^6/6! - 77*x^7/7! + 203*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(j*a(j)*
          binomial(n, j)*t(n-j), j=1..n-1)/n))(combinat[numbpart])
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 07 2018
  • Mathematica
    nmax = 25; CoefficientList[Series[Log[Sum[PartitionsP[k] x^k/k!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = PartitionsP[n] - Sum[k Binomial[n, k] PartitionsP[n - k] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: log(Sum_{k>=0} A000041(k)*x^k/k!).

A300514 Expansion of e.g.f. exp(Sum_{k>=1} q(k)*x^k/k!), where q(k) = number of partitions of k into distinct parts (A000009).

Original entry on oeis.org

1, 1, 2, 6, 20, 79, 358, 1791, 9854, 58958, 379716, 2617320, 19197327, 149099827, 1221390172, 10515829901, 94865603724, 894302028718, 8788782784778, 89848652800152, 953666248076772, 10491219933196228, 119429574273909421, 1404835599743325765, 17052591331677804136
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 07 2018

Keywords

Comments

Exponential transform of A000009.

Examples

			E.g.f.: A(x) = 1 + x/1! + 2*x^2/2! + 6*x^3/3! + 20*x^4/4! + 79*x^5/5! + 358*x^6/6! + 1791*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*b(j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 07 2018
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Sum[PartitionsQ[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[PartitionsQ[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]

Formula

E.g.f.: exp(Sum_{k>=1} A000009(k)*x^k/k!).

A324236 Expansion of e.g.f. 1 / (1 - Sum_{k>=1} p(k)*x^k/k!), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 1, 4, 21, 149, 1317, 13985, 173209, 2451844, 39044784, 690862770, 13446615722, 285510978887, 6567419023617, 162686428939423, 4317885767971448, 122241788335870103, 3677030054440996775, 117111150680951037907, 3937135961534144480556, 139328182441566999124409
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 02 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-k)*
          binomial(n, k)*combinat[numbpart](k), k=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 - Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] PartitionsP[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * p(k) * a(n-k).
a(n) ~ c * d^n * n!, where d = 1.769410350604938716841596133605930996231892313627986058432895713767619380283... and c = 0.6329116440270047042622953043644713645679657251851049998748689226219... - Vaclav Kotesovec, Sep 03 2019
Showing 1-3 of 3 results.