cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215915 E.g.f.: exp( Sum_{n>=1} A000041(n)*x^n/n ), where A000041(n) is the number of partitions of n.

Original entry on oeis.org

1, 1, 3, 13, 79, 579, 5209, 53347, 628257, 8223481, 119473291, 1893056781, 32677209103, 606930554923, 12109058077809, 257638964244739, 5830359141736129, 139638723615395697, 3531794326401241747, 93977250969358226701, 2625647922067519041231, 76809884197769914248211
Offset: 0

Views

Author

Paul D. Hanna, Aug 26 2012

Keywords

Comments

Note that exp( Sum_{k>=1} A183610(n,k)*x^k/k ) is an integer series for row n>=1; the partition numbers, which forms row 0 of table A183610, is the exception.

Examples

			G.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 79*x^4/4! + 579*x^5/5! + 5209*x^6/6! +  ...
such that log(A(x)) = x + 2*x^2/2 + 3*x^3/3 + 5*x^4/4 + 7*x^5/5 + 11*x^6/6 + 15*x^7/7 + 22*x^8/8 + ... + A000041(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^Sum[PartitionsP[k]*x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
  • Maxima
    a(n):=if n=0 then 1 else (n-1)!*sum(num_partitions(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1); /* Vladimir Kruchinin, Feb 27 2015 */
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n+1,numbpart(m)*x^m/m+x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))
    

Formula

a(n) = (n-1)!*sum(p(i+1)*a(n-i-1)/(n-i-1)!,i,0,n-1), a(0)=1, where p(i) is the number of partitions of n. - Vladimir Kruchinin, Feb 27 2015

A293796 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} j^(k-1)*A000041(j)*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 9, 31, 79, 1, 1, 17, 79, 265, 579, 1, 1, 33, 211, 937, 2621, 5209, 1, 1, 65, 583, 3433, 12501, 31621, 53347, 1, 1, 129, 1651, 12889, 62141, 204361, 426595, 628257, 1, 1, 257, 4759, 49225, 319461, 1395121, 3703099
Offset: 0

Views

Author

Seiichi Manyama, Oct 16 2017

Keywords

Examples

			Square array begins:
     1,    1,     1,     1,      1, ...
     1,    1,     1,     1,      1, ...
     3,    5,     9,    17,     33, ...
    13,   31,    79,   211,    583, ...
    79,  265,   937,  3433,  12889, ...
   579, 2621, 12501, 62141, 319461, ...
		

Crossrefs

Columns k=0..2 give A215915, A058892, A293731.
Rows n=0-1 give A000012.

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j^k*A000041(j)*A(n-j,k)/(n-j)! for n > 0.
Showing 1-2 of 2 results.