cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002746 Sum of logarithmic numbers.

Original entry on oeis.org

1, 4, 13, 50, 203, 1154, 6627, 49356, 403293, 3858376, 33929377, 460614670, 5168544119, 64518640406, 946910125319, 16124114481720, 221243980745433, 4261440137319852, 68524390012831189, 1477309421907315082
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * DivisorSigma[0,k] * (k-1)!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 16 2019 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} A000005(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: -exp(x) * log(Product_{k>=1} (1 - x^k)^(1/k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -2 (mod p) for prime p. The pseudoprimes of this congruence are 4, 12, 30, 380, 858, 1722 ... - Amiram Eldar, May 13 2020

Extensions

Corrected and extended by Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003

A330351 Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.

Original entry on oeis.org

1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} (exp(x) - 1)^(i*j) / (i*j).
E.g.f.: log(Product_{k>=1} 1 / (1 - (exp(x) - 1)^k)^(1/k)).
G.f.: Sum_{k>=1} (k - 1)! * tau(k) * x^k / Product_{j=1..k} (1 - j*x), where tau = A000005.
a(n) = Sum_{k=1..n} Stirling2(n,k) * (k - 1)! * tau(k).
a(n) ~ n! * (log(n) + 2*gamma - log(2) - log(log(2))) / (n * (log(2))^n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 14 2019

A338805 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1-x^j)^(-u/j).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 18, 28, 12, 1, 48, 170, 100, 20, 1, 480, 988, 870, 260, 30, 1, 1440, 7896, 7588, 3150, 560, 42, 1, 20160, 60492, 73808, 37408, 9100, 1064, 56, 1, 120960, 555264, 764524, 460656, 140448, 22428, 1848, 72, 1, 1451520, 5819904, 8448120, 5952700, 2162160, 436296, 49140, 3000, 90, 1
Offset: 1

Views

Author

Seiichi Manyama, Nov 10 2020

Keywords

Comments

Also the Bell transform of A318249.
If we use sigma(n,1) in Vladeta Jovovic's formulas in A008298 then one gets the D'Arcais numbers, if we use sigma(n,0) then this sequence arises. # Peter Luschny, Jun 01 2022

Examples

			exp(Sum_{n>0} u*d(n)*x^n/n) = 1 + u*x + (2*u+u^2)*x^2/2! + (4*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
      1;
      2,     1;
      4,     6,     1;
     18,    28,    12,     1;
     48,   170,   100,    20,    1;
    480,   988,   870,   260,   30,    1;
   1440,  7896,  7588,  3150,  560,   42,  1;
  20160, 60492, 73808, 37408, 9100, 1064, 56, 1;
		

Crossrefs

Column k=1..3 give A318249, A338810, A338811.
Row sums give A028342.
Cf. A000005 (d(n)), A008298, A264428.

Programs

  • Maple
    # The function BellMatrix is defined in A264428 (with column k = 0).
    BellMatrix(n -> n!*NumberTheory:-SumOfDivisors(n+1, 0), 9);
    # Alternative:
    P := proc(n, x) option remember; if n = 0 then 1 else
    (1/n)*x*add(NumberTheory:-SumOfDivisors(n-k, 0)*P(k, x), k=0..n-1) fi end:
    Trow := n -> seq(n!*coeff(P(n, x), x, k), k = 1..n):
    seq(Trow(n), n = 0..10); # Peter Luschny, Jun 01 2022
  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSigma[0, n]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1-x^j+x*O(x^n))^(-u/j)), n), k)}
    
  • PARI
    a(n) = if(n<1, 0, (n-1)!*numdiv(n));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))

Formula

E.g.f.: exp(Sum_{n>0} u*d(n)*x^n/n), where d(n) is the number of divisors of n.
T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} d(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} d(i_j)/i_j.

A330352 Expansion of e.g.f. -Sum_{k>=1} log(1 - log(1 + x)^k) / k.

Original entry on oeis.org

1, 1, 0, 10, -68, 818, -9782, 130730, -1835752, 27408672, -438578616, 7697802264, -150743052528, 3293454634416, -78787556904864, 2014008113598432, -54001416897306240, 1504891127666322048, -43527807706621236480, 1311515508480252542208
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Sum[Log[1 - Log[1 + x]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} log(1 + x)^(i*j) / (i*j).
E.g.f.: log(Product_{k>=1} 1 / (1 - log(1 + x)^k)^(1/k)).
a(n) = Sum_{k=1..n} Stirling1(n,k) * (k - 1)! * tau(k), where tau = A000005.

A002744 Sum of logarithmic numbers.

Original entry on oeis.org

1, 0, 1, 10, -17, 406, -1437, 20476, -44907, 1068404, -5112483, 230851094, -1942311373, 31916614874, -27260241361, 3826126294680, -37957167335671, 2169009251237640, -25847377785179111, 858747698098918338, -5611513985867158697, 154094365406716365118
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(-1)^k * DivisorSigma[0, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k)*numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k)*A000005(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: -exp(-x) * log(Product_{k>=1} (1 - x^k)^(1/k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -2 (mod p) for prime p. The pseudoprimes of this congruence are 4, 6, 20, 42, 1806, ... - Amiram Eldar, May 13 2020

Extensions

Corrected and extended by Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003

A318250 a(n) = (n - 1)! * sigma_2(n), where sigma_2(n) = sum of squares of divisors of n (A001157).

Original entry on oeis.org

1, 5, 20, 126, 624, 6000, 36000, 428400, 3669120, 47174400, 442713600, 8382528000, 81430272000, 1556755200000, 22666355712000, 445916959488000, 6067609067520000, 161837779783680000, 2317659281473536000, 66418224823222272000, 1216451004088320000000, 31165474724742758400000
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n - 1)! DivisorSigma[2, n], {n, 1, 22}]
    nmax = 22; Rest[CoefficientList[Series[Sum[x^k/(k (1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 22; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
  • PARI
    a(n) = (n-1)!*sigma(n,2); \\ Michel Marcus, Aug 22 2018

Formula

E.g.f.: Sum_{k>=1} x^k/(k*(1 - x^k)^2).
E.g.f.: -log(Product_{k>=1} (1 - x^k)^k).
E.g.f.: A(x) = log(B(x)), where B(x) = o.g.f. of A000219.
a(p^k) = (p^(2*k+2) - 1)*(p^k - 1)!/(p^2 - 1), where p is a prime.

A338814 Expansion of e.g.f. log(Product_{k>0} (1 + x^k)^(1/k)).

Original entry on oeis.org

1, 0, 4, -6, 48, 0, 1440, -10080, 120960, 0, 7257600, -79833600, 958003200, 0, 348713164800, -3923023104000, 41845579776000, 0, 12804747411456000, -243290200817664000, 9731608032706560000, 0, 2248001455555215360000, -103408066955539906560000
Offset: 1

Views

Author

Seiichi Manyama, Nov 10 2020

Keywords

Crossrefs

Column 1 of A338813.

Programs

  • Mathematica
    a[n_] := (n - 1)! * DivisorSum[n, (-1)^(# + 1) &]; Array[a, 25] (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(log(prod(k=1, N, (1+x^k)^(1/k)))))
    
  • PARI
    {a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)))}

Formula

a(n) = (n-1)! * A048272(n).

A352060 a(n) = (n - 1)! * omega(n), where omega(n) = number of distinct primes dividing n (A001221).

Original entry on oeis.org

0, 1, 2, 6, 24, 240, 720, 5040, 40320, 725760, 3628800, 79833600, 479001600, 12454041600, 174356582400, 1307674368000, 20922789888000, 711374856192000, 6402373705728000, 243290200817664000, 4865804016353280000, 102181884343418880000, 1124000727777607680000
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n-1)! * PrimeNu[n]; Array[a, 25] (* Amiram Eldar, Mar 02 2022 *)
  • PARI
    a(n) = (n-1)!*omega(n);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(-sum(k=1, N, isprime(k)*log(1-x^k)/k))))

Formula

E.g.f.: -Sum_{p prime} log(1-x^p)/p.

A354851 a(n) = (n-1)! * Sum_{d|n} d^(n/d).

Original entry on oeis.org

1, 3, 8, 54, 144, 2880, 5760, 206640, 1491840, 24675840, 43545600, 10298534400, 6706022400, 1195587993600, 33476463820800, 775450900224000, 376610217984000, 553805325545472000, 128047474114560000, 339876410542276608000, 6208765924866785280000
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n - 1)! * DivisorSum[n, #^(n/#) &]; Array[a, 20] (* Amiram Eldar, Jun 08 2022 *)
  • PARI
    a(n) = (n-1)!*sumdiv(n, d, d^(n/d));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k)/k)))

Formula

a(n) = (n-1)! * A055225(n).
E.g.f.: -Sum_{k>0} log(1 - k * x^k)/k.
If p is prime, a(p) = (p-1)! + p!.

A353186 Expansion of e.g.f. 1/(1 - Sum_{k>=1} d(k) * x^k / k), where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 1, 4, 22, 170, 1588, 18236, 240840, 3662424, 62456136, 1185150768, 24714979584, 562659843984, 13870798275072, 368324715871680, 10478253239415552, 317975367247809408, 10252138622419702656, 349999438215928660992, 12612365665457524786944, 478414908509124826439424
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    d[k_] := d[k] = DivisorSigma[0, k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * d[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 21, 0] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*numdiv(j)*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A318249(k) * binomial(n,k) * a(n-k).
Showing 1-10 of 10 results.