A002746
Sum of logarithmic numbers.
Original entry on oeis.org
1, 4, 13, 50, 203, 1154, 6627, 49356, 403293, 3858376, 33929377, 460614670, 5168544119, 64518640406, 946910125319, 16124114481720, 221243980745433, 4261440137319852, 68524390012831189, 1477309421907315082
Offset: 1
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Amiram Eldar, Table of n, a(n) for n = 1..450
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. [Annotated scanned copy]
- J. M. Gandhi, Logarithmic Numbers and the Functions d(n) and sigma(n), The American Mathematical Monthly, Vol. 73, No. 9 (1966), pp. 959-964, alternative link.
- Index entries for sequences related to logarithmic numbers
-
Table[Sum[Binomial[n,k] * DivisorSigma[0,k] * (k-1)!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 16 2019 *)
-
a(n) = sum(k=1, n, numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020
A330351
Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.
Original entry on oeis.org
1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1
Cf.
A000005,
A000629,
A002746,
A008277,
A028342,
A308554,
A318249,
A330352,
A330353,
A330354,
A330445.
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A338805
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1-x^j)^(-u/j).
Original entry on oeis.org
1, 2, 1, 4, 6, 1, 18, 28, 12, 1, 48, 170, 100, 20, 1, 480, 988, 870, 260, 30, 1, 1440, 7896, 7588, 3150, 560, 42, 1, 20160, 60492, 73808, 37408, 9100, 1064, 56, 1, 120960, 555264, 764524, 460656, 140448, 22428, 1848, 72, 1, 1451520, 5819904, 8448120, 5952700, 2162160, 436296, 49140, 3000, 90, 1
Offset: 1
exp(Sum_{n>0} u*d(n)*x^n/n) = 1 + u*x + (2*u+u^2)*x^2/2! + (4*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
2, 1;
4, 6, 1;
18, 28, 12, 1;
48, 170, 100, 20, 1;
480, 988, 870, 260, 30, 1;
1440, 7896, 7588, 3150, 560, 42, 1;
20160, 60492, 73808, 37408, 9100, 1064, 56, 1;
-
# The function BellMatrix is defined in A264428 (with column k = 0).
BellMatrix(n -> n!*NumberTheory:-SumOfDivisors(n+1, 0), 9);
# Alternative:
P := proc(n, x) option remember; if n = 0 then 1 else
(1/n)*x*add(NumberTheory:-SumOfDivisors(n-k, 0)*P(k, x), k=0..n-1) fi end:
Trow := n -> seq(n!*coeff(P(n, x), x, k), k = 1..n):
seq(Trow(n), n = 0..10); # Peter Luschny, Jun 01 2022
-
a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSigma[0, n]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1-x^j+x*O(x^n))^(-u/j)), n), k)}
-
a(n) = if(n<1, 0, (n-1)!*numdiv(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A330352
Expansion of e.g.f. -Sum_{k>=1} log(1 - log(1 + x)^k) / k.
Original entry on oeis.org
1, 1, 0, 10, -68, 818, -9782, 130730, -1835752, 27408672, -438578616, 7697802264, -150743052528, 3293454634416, -78787556904864, 2014008113598432, -54001416897306240, 1504891127666322048, -43527807706621236480, 1311515508480252542208
Offset: 1
-
nmax = 20; CoefficientList[Series[-Sum[Log[1 - Log[1 + x]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]
A002744
Sum of logarithmic numbers.
Original entry on oeis.org
1, 0, 1, 10, -17, 406, -1437, 20476, -44907, 1068404, -5112483, 230851094, -1942311373, 31916614874, -27260241361, 3826126294680, -37957167335671, 2169009251237640, -25847377785179111, 858747698098918338, -5611513985867158697, 154094365406716365118
Offset: 1
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Amiram Eldar, Table of n, a(n) for n = 1..451
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. [Annotated scanned copy]
- J. M. Gandhi, Logarithmic Numbers and the Functions d(n) and sigma(n), The American Mathematical Monthly, Vol. 73, No. 9 (1966), pp. 959-964, alternative link.
- Index entries for sequences related to logarithmic numbers
-
a[n_] := n! * Sum[(-1)^k * DivisorSigma[0, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
-
a(n) = sum(k=1, n, (-1)^(n-k)*numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020
A318250
a(n) = (n - 1)! * sigma_2(n), where sigma_2(n) = sum of squares of divisors of n (A001157).
Original entry on oeis.org
1, 5, 20, 126, 624, 6000, 36000, 428400, 3669120, 47174400, 442713600, 8382528000, 81430272000, 1556755200000, 22666355712000, 445916959488000, 6067609067520000, 161837779783680000, 2317659281473536000, 66418224823222272000, 1216451004088320000000, 31165474724742758400000
Offset: 1
-
Table[(n - 1)! DivisorSigma[2, n], {n, 1, 22}]
nmax = 22; Rest[CoefficientList[Series[Sum[x^k/(k (1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 22; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
-
a(n) = (n-1)!*sigma(n,2); \\ Michel Marcus, Aug 22 2018
A338814
Expansion of e.g.f. log(Product_{k>0} (1 + x^k)^(1/k)).
Original entry on oeis.org
1, 0, 4, -6, 48, 0, 1440, -10080, 120960, 0, 7257600, -79833600, 958003200, 0, 348713164800, -3923023104000, 41845579776000, 0, 12804747411456000, -243290200817664000, 9731608032706560000, 0, 2248001455555215360000, -103408066955539906560000
Offset: 1
-
a[n_] := (n - 1)! * DivisorSum[n, (-1)^(# + 1) &]; Array[a, 25] (* Amiram Eldar, Apr 28 2021 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(log(prod(k=1, N, (1+x^k)^(1/k)))))
-
{a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)))}
A352060
a(n) = (n - 1)! * omega(n), where omega(n) = number of distinct primes dividing n (A001221).
Original entry on oeis.org
0, 1, 2, 6, 24, 240, 720, 5040, 40320, 725760, 3628800, 79833600, 479001600, 12454041600, 174356582400, 1307674368000, 20922789888000, 711374856192000, 6402373705728000, 243290200817664000, 4865804016353280000, 102181884343418880000, 1124000727777607680000
Offset: 1
-
a[n_] := (n-1)! * PrimeNu[n]; Array[a, 25] (* Amiram Eldar, Mar 02 2022 *)
-
a(n) = (n-1)!*omega(n);
-
my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(-sum(k=1, N, isprime(k)*log(1-x^k)/k))))
A354851
a(n) = (n-1)! * Sum_{d|n} d^(n/d).
Original entry on oeis.org
1, 3, 8, 54, 144, 2880, 5760, 206640, 1491840, 24675840, 43545600, 10298534400, 6706022400, 1195587993600, 33476463820800, 775450900224000, 376610217984000, 553805325545472000, 128047474114560000, 339876410542276608000, 6208765924866785280000
Offset: 1
-
a[n_] := (n - 1)! * DivisorSum[n, #^(n/#) &]; Array[a, 20] (* Amiram Eldar, Jun 08 2022 *)
-
a(n) = (n-1)!*sumdiv(n, d, d^(n/d));
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-k*x^k)/k)))
A353186
Expansion of e.g.f. 1/(1 - Sum_{k>=1} d(k) * x^k / k), where d(n) = number of divisors of n (A000005).
Original entry on oeis.org
1, 1, 4, 22, 170, 1588, 18236, 240840, 3662424, 62456136, 1185150768, 24714979584, 562659843984, 13870798275072, 368324715871680, 10478253239415552, 317975367247809408, 10252138622419702656, 349999438215928660992, 12612365665457524786944, 478414908509124826439424
Offset: 0
-
d[k_] := d[k] = DivisorSigma[0, k]; a[0] = 1; a[n_] := a[n] = Sum[(k - 1)! * d[k] * Binomial[n, k] * a[n - k], {k, 1, n}]; Array[a, 21, 0] (* Amiram Eldar, Apr 30 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, numdiv(k)*x^k/k))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (j-1)!*numdiv(j)*binomial(i, j)*v[i-j+1])); v;
Showing 1-10 of 10 results.
Comments