cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A346545 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(exp(x)/k).

Original entry on oeis.org

1, 1, 5, 26, 175, 1384, 12933, 135050, 1582901, 20380208, 286577757, 4352682256, 71247772121, 1244923243966, 23166410620637, 456940648889070, 9521696033968393, 208851154175983608, 4812156417656806393, 116112764199821653284, 2928658457243240595901, 77042063713731887400418
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 16 2021

Keywords

Comments

Exponential transform of A002746.

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(Exp[x]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Exp[Exp[x] Sum[DivisorSigma[0, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    A002746[n_] := Sum[Binomial[n, k] DivisorSigma[0, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002746[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: exp( exp(x) * Sum_{k>=1} d(k) * x^k / k ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002746(k) * a(n-k).

A330351 Expansion of e.g.f. -Sum_{k>=1} log(1 - (exp(x) - 1)^k) / k.

Original entry on oeis.org

1, 3, 11, 57, 359, 2793, 25871, 273297, 3268199, 44132313, 659178431, 10710083937, 189256343639, 3636935896233, 75228664345391, 1657133255788977, 38770903634692679, 964609458391250553, 25470259163197390751, 709595190213796188417
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Sum[Log[1 - (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS2[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} (exp(x) - 1)^(i*j) / (i*j).
E.g.f.: log(Product_{k>=1} 1 / (1 - (exp(x) - 1)^k)^(1/k)).
G.f.: Sum_{k>=1} (k - 1)! * tau(k) * x^k / Product_{j=1..k} (1 - j*x), where tau = A000005.
a(n) = Sum_{k=1..n} Stirling2(n,k) * (k - 1)! * tau(k).
a(n) ~ n! * (log(n) + 2*gamma - log(2) - log(log(2))) / (n * (log(2))^n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 14 2019

A002744 Sum of logarithmic numbers.

Original entry on oeis.org

1, 0, 1, 10, -17, 406, -1437, 20476, -44907, 1068404, -5112483, 230851094, -1942311373, 31916614874, -27260241361, 3826126294680, -37957167335671, 2169009251237640, -25847377785179111, 858747698098918338, -5611513985867158697, 154094365406716365118
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(-1)^k * DivisorSigma[0, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k)*numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k)*A000005(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: -exp(-x) * log(Product_{k>=1} (1 - x^k)^(1/k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -2 (mod p) for prime p. The pseudoprimes of this congruence are 4, 6, 20, 42, 1806, ... - Amiram Eldar, May 13 2020

Extensions

Corrected and extended by Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003

A260323 Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=-1.

Original entry on oeis.org

1, 3, 2, 8, 6, 6, 24, 24, 24, 24, 89, 80, 60, 120, 120, 415, 450, 480, 360, 720, 720, 2372, 2142, 2730, 840, 2520, 5040, 5040, 16072, 17696, 10416, 21840, 6720, 20160, 40320, 40320, 125673, 112464, 151704, 184464, 15120, 60480, 181440, 362880, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2015

Keywords

Examples

			Triangle begins:
1,
3,2,
8,6,6,
24,24,24,24,
89,80,60,120,120,
415,450,480,360,720,720,
2372,2142,2730,840,2520,5040,5040,
...
		

Crossrefs

Rows, column sums give A002104, A002742, A002745, A002746.

Programs

  • Maple
    A260323 := proc(n,r)
        if r = 0 then
            1 ;
        elif n > r+1 then
            0 ;
        else
            add( 1/(r-j*n)!/j,j=1..(r)/n) ;
            %*r! ;
        end if;
    end proc:
    for r from 1 to 20 do
        for n from 1 to r do
            printf("%a,",A260323(n,r)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 24 2015
  • Mathematica
    T[n_, k_] := If[n == 0, 1, If[k > n+1, 0, Sum[1/(n - j*k)!/j, {j, 1, n/k}]]]*n!;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar *)

A356589 a(n) = n! * Sum_{k=1..n} sigma_k(k)/(k * (n-k)!).

Original entry on oeis.org

1, 7, 74, 1896, 83829, 6169915, 634444586, 89796130088, 16407420884385, 3792452363345383, 1076168167972120354, 368657061467873013440, 149787334364400115372677, 71262783791831946810277899, 39228224120114488162020163762
Offset: 1

Views

Author

Seiichi Manyama, Aug 14 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[DivisorSigma[k, k]/(k*(n - k)!), {k, 1, n}]; Array[a, 15] (* Amiram Eldar, Aug 14 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sigma(k, k)/(k*(n-k)!));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, log(1-(k*x)^k)/k)))

Formula

E.g.f.: -exp(x) * Sum_{k>0} log(1 - (k*x)^k)/k.
a(n) ~ n! * n^(n-1). - Vaclav Kotesovec, Aug 17 2022

A356600 a(n) = n! * Sum_{k=1..n} sigma_2(k)/(k * (n-k)!).

Original entry on oeis.org

1, 7, 38, 240, 1509, 12115, 96326, 929432, 9421089, 108909943, 1249105054, 17862483320, 241674418101, 3676733397363, 59149265744302, 1058605924855568, 18041587282787489, 363409114370324295, 6970858463185187062, 153017341796727034336, 3360005220780469981157
Offset: 1

Views

Author

Seiichi Manyama, Aug 15 2022

Keywords

Comments

The average value of a(n) is zeta(3) * exp(1) * n * n!. - Vaclav Kotesovec, Aug 17 2022

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[DivisorSigma[2, k]/(k * (n-k)!), {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Aug 17 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sigma(k, 2)/(k*(n-k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=1, N, x^k/(k*(1-x^k)^2))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*sum(k=1, N, k*log(1-x^k))))

Formula

E.g.f.: exp(x) * Sum_{k>0} x^k/(k * (1 - x^k)^2).
E.g.f.: -exp(x) * Sum_{k>0} k * log(1 - x^k).
Showing 1-6 of 6 results.