cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002746 Sum of logarithmic numbers.

Original entry on oeis.org

1, 4, 13, 50, 203, 1154, 6627, 49356, 403293, 3858376, 33929377, 460614670, 5168544119, 64518640406, 946910125319, 16124114481720, 221243980745433, 4261440137319852, 68524390012831189, 1477309421907315082
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * DivisorSigma[0,k] * (k-1)!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 16 2019 *)
  • PARI
    a(n) = sum(k=1, n, numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} A000005(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: -exp(x) * log(Product_{k>=1} (1 - x^k)^(1/k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -2 (mod p) for prime p. The pseudoprimes of this congruence are 4, 12, 30, 380, 858, 1722 ... - Amiram Eldar, May 13 2020

Extensions

Corrected and extended by Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003

A330352 Expansion of e.g.f. -Sum_{k>=1} log(1 - log(1 + x)^k) / k.

Original entry on oeis.org

1, 1, 0, 10, -68, 818, -9782, 130730, -1835752, 27408672, -438578616, 7697802264, -150743052528, 3293454634416, -78787556904864, 2014008113598432, -54001416897306240, 1504891127666322048, -43527807706621236480, 1311515508480252542208
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[-Sum[Log[1 - Log[1 + x]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[Sum[StirlingS1[n, k] (k - 1)! DivisorSigma[0, k], {k, 1, n}], {n, 1, 20}]

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} log(1 + x)^(i*j) / (i*j).
E.g.f.: log(Product_{k>=1} 1 / (1 - log(1 + x)^k)^(1/k)).
a(n) = Sum_{k=1..n} Stirling1(n,k) * (k - 1)! * tau(k), where tau = A000005.

A260322 Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=1.

Original entry on oeis.org

1, -1, 2, 2, -6, 6, 0, 24, -24, 24, 9, -80, 60, -120, 120, 35, 450, 240, 360, -720, 720, 230, -2142, -2310, -840, 2520, -5040, 5040, 1624, 17696, 9744, 21840, -6720, 20160, -40320, 40320, 13209, -112464, 91224, -184464, 15120, -60480, 181440, -362880, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2015

Keywords

Examples

			Triangle begins:
    1;
   -1,     2;
    2,    -6,     6;
    0,    24,   -24,   24;
    9,   -80,    60, -120,  120;
   35,   450,   240,  360, -720,   720;
  230, -2142, -2310, -840, 2520, -5040, 5040;
  ...
		

Crossrefs

Rows, column sums give A002741, A002742, A002743, A002744.
Main diagonal gives A000142.

Programs

  • Maple
    A260322 := proc(n,r)
        if r = 0 then
            1 ;
        elif n > r+1 then
            0 ;
        else
            add( (-1)^(r-j*n)/(r-j*n)!/j,j=1..(r)/n) ;
            %*r! ;
        end if;
    end proc:
    for r from 1 to 20 do
        for n from 1 to r do
            printf("%a,",A260322(n,r)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 24 2015
  • Mathematica
    T[n_, k_] := Which[n == 0, 1, k > n+1, 0, True,
       Sum[(-1)^(n-j*k)/(n-j*k)!/j, {j, 1, n/k}]] n!;
    Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 30 2023 *)

A346546 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(exp(-x)/k).

Original entry on oeis.org

1, 1, 1, 2, 15, 44, 485, 1854, 25781, 170288, 2477485, 12571140, 435748665, 2049818198, 64651106637, 628176476186, 18837010964105, 93248340364152, 6695745240354169, 33794005826851192, 2549048418922818525, 20209158430316698922, 1138228671555859916609
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 16 2021

Keywords

Comments

Exponential transform of A002744.
The first negative term is a(37) = -2641429247236224246927617458359165366254750.

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(Exp[-x]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Exp[-x] Sum[DivisorSigma[0, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    A002744[n_] := Sum[(-1)^(n - k) Binomial[n, k] DivisorSigma[0, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002744[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp( exp(-x) * Sum_{k>=1} d(k) * x^k / k ).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002744(k) * a(n-k).
Showing 1-4 of 4 results.