A318249
a(n) = (n - 1)! * d(n), where d(n) = number of divisors of n (A000005).
Original entry on oeis.org
1, 2, 4, 18, 48, 480, 1440, 20160, 120960, 1451520, 7257600, 239500800, 958003200, 24908083200, 348713164800, 6538371840000, 41845579776000, 2134124568576000, 12804747411456000, 729870602452992000, 9731608032706560000, 204363768686837760000, 2248001455555215360000, 206816133911079813120000
Offset: 1
-
Table[(n - 1)! DivisorSigma[0, n], {n, 1, 24}]
nmax = 24; Rest[CoefficientList[Series[Sum[Sum[x^(j k)/(j k), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
nmax = 24; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
-
a(n) = (n-1)!*numdiv(n); \\ Michel Marcus, Aug 22 2018
A338870
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = exp(Sum_{n>0} u*d(n)*x^n/n!), where d(n) is the number of divisors of n.
Original entry on oeis.org
1, 2, 1, 2, 6, 1, 3, 20, 12, 1, 2, 55, 80, 20, 1, 4, 142, 405, 220, 30, 1, 2, 322, 1792, 1785, 490, 42, 1, 4, 779, 7224, 12152, 5810, 952, 56, 1, 3, 1608, 27323, 73920, 56532, 15498, 1680, 72, 1, 4, 3894, 99690, 414815, 482160, 204204, 35910, 2760, 90, 1
Offset: 1
exp(Sum_{n>0} u*d(n)*x^n/n!) = 1 + u*x + (2*u+u^2)*x^2/2! + (2*u+6*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
2, 1;
2, 6, 1;
3, 20, 12, 1;
2, 55, 80, 20, 1;
4, 142, 405, 220, 30, 1;
2, 322, 1792, 1785, 490, 42, 1;
4, 779, 7224, 12152, 5810, 952, 56, 1;
...
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * DivisorSigma[0, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
a(n) = if(n<1, 0, numdiv(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A338813
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1+x^j)^(u/j).
Original entry on oeis.org
1, 0, 1, 4, 0, 1, -6, 16, 0, 1, 48, -30, 40, 0, 1, 0, 448, -90, 80, 0, 1, 1440, -840, 2128, -210, 140, 0, 1, -10080, 23532, -6720, 7168, -420, 224, 0, 1, 120960, -127008, 177868, -30240, 19488, -756, 336, 0, 1, 0, 2191104, -1018080, 892540, -100800, 45696, -1260, 480, 0, 1
Offset: 1
exp(Sum_{n>0} u*A048272(n)*x^n/n) = 1 + u*x + u^2*x^2/2! + (4*u+u^3)*x^3/3! + ... .
Triangle begins:
1;
0, 1;
4, 0, 1;
-6, 16, 0, 1;
48, -30, 40, 0, 1;
0, 448, -90, 80, 0, 1;
1440, -840, 2128, -210, 140, 0, 1;
-10080, 23532, -6720, 7168, -420, 224, 0, 1;
...
-
a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSum[n, (-1)^(# + 1) &]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1+x^j+x*O(x^n))^(u/j)), n), k)}
-
a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A338864
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} ( exp(x^j/(1 - x^j)) )^u.
Original entry on oeis.org
1, 4, 1, 12, 12, 1, 72, 96, 24, 1, 240, 840, 360, 40, 1, 2880, 7200, 4920, 960, 60, 1, 10080, 70560, 65520, 19320, 2100, 84, 1, 161280, 745920, 887040, 362880, 58800, 4032, 112, 1, 1088640, 7983360, 12640320, 6652800, 1481760, 150192, 7056, 144, 1
Offset: 1
exp(Sum_{n>0} u*d(n)*x^n) = 1 + u*x + (4*u+u^2)*x^2/2! + (12*u+12*u^2+u^3)*x^3/3! + ... .
Triangle begins:
1;
4, 1;
12, 12, 1;
72, 96, 24, 1;
240, 840, 360, 40, 1;
2880, 7200, 4920, 960, 60, 1;
10080, 70560, 65520, 19320, 2100, 84, 1;
161280, 745920, 887040, 362880, 58800, 4032, 112, 1;
...
-
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * j! * DivisorSigma[0, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
{T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, exp(x^j/(1-x^j+x*O(x^n)))^u), n), k)}
-
a(n) = if(n<1, 0, n!*numdiv(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
A338810
a(n) = (n!/2) * Sum_{k=1..n-1} d(k)*d(n-k)/(k*(n-k)), where d(n) is the number of divisors of n.
Original entry on oeis.org
0, 1, 6, 28, 170, 988, 7896, 60492, 555264, 5819904, 61776000, 725950080, 9894493440, 137963243520, 1875645434880, 33258387456000, 528975488563200, 9760969019289600, 175565885864140800, 3608256006957772800, 72367669059194880000, 1745463407406243840000
Offset: 1
-
a[n_] := (n - 1)! * Sum[DivisorSigma[0, k] * DivisorSigma[0, n - k]/k, {k, 1, n - 1} ]; Array[a, 22] (* Amiram Eldar, Nov 10 2020 *)
-
{a(n)= n!*sum(k=1, n-1, numdiv(k)*numdiv(n-k)/(k*(n-k)))/2}
-
{a(n)= (n-1)!*sum(k=1, n-1, numdiv(k)*numdiv(n-k)/k)}
-
{a(n) = my(u='u); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-u/k)), n), 2)}
A338811
a(n) = (n!/6) * Sum_{i,j,k > 0 and i+j+k=n} d(i)*d(j)*d(k)/(i*j*k), where d(n) is the number of divisors of n.
Original entry on oeis.org
0, 0, 1, 12, 100, 870, 7588, 73808, 764524, 8448120, 103816944, 1334764728, 18483356736, 274780501632, 4371694872192, 71815113008640, 1282261138007040, 23828058693642240, 468231649812725760, 9599857257164820480, 205863214718290636800, 4646428416182168985600
Offset: 1
-
{a(n) = my(u='u); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-u/k)), n), 3)}
Showing 1-6 of 6 results.
Comments