A075525
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*t^n/n! = ((1+t)*(1+t^2)*(1+t^3)...)^u.
Original entry on oeis.org
1, 1, 1, 8, 3, 1, 6, 35, 6, 1, 144, 110, 95, 10, 1, 480, 1594, 585, 205, 15, 1, 5760, 8064, 8974, 1995, 385, 21, 1, 5040, 125292, 70252, 35329, 5320, 658, 28, 1, 524160, 684144, 1178540, 392364, 110649, 12096, 1050, 36, 1, 2177280, 14215536, 10683180, 7260560, 1630125, 295113, 24570, 1590, 45, 1
Offset: 1
Triangle begins:
1;
1, 1;
8, 3, 1;
6, 35, 6, 1;
144, 110, 95, 10, 1;
480, 1594, 585, 205, 15, 1;
5760, 8064, 8974, 1995, 385, 21, 1;
5040, 125292, 70252, 35329, 5320, 658, 28, 1;
...
exp(Sum_{n>0} u*A000593(n)*t^n/n) = 1 + u*t/1! + (u+u^2)*t^2/2! + (8*u+3*u^2+u^3)*t^3/3! + (6*u+35*u^2+6*u^3+u^4)*t^4/4! + ... - _Seiichi Manyama_, Nov 08 2020.
-
# Adds (1,0,0,0,...) as row 0.
seq(PolynomialTools[CoefficientList](n!*coeff(series(mul((1+z^k)^u, k=1..20),z,20),z,n),u), n=0..9); # Peter Luschny, Jan 26 2016
-
T[n_, k_] := n! SeriesCoefficient[(Times @@ (1 + t^Range[n]))^u, {t, 0, n}, {u, 0, k}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 04 2019 *)
-
a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)*n/d));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
-
# uses[bell_matrix from A264428]
# Adds (1,0,0,0,..) as row 0.
d = lambda n: sum((-1)^(d+1)*n/d for d in divisors(n))
bell_matrix(lambda n: factorial(n)*d(n+1), 9) # Peter Luschny, Jan 26 2016
A330505
Expansion of e.g.f. Sum_{k>=1} arctanh(x^k).
Original entry on oeis.org
1, 2, 8, 24, 144, 960, 5760, 40320, 524160, 4354560, 43545600, 638668800, 6706022400, 99632332800, 2092278988800, 20922789888000, 376610217984000, 9247873130496000, 128047474114560000, 2919482409811968000, 77852864261652480000
Offset: 1
-
nmax = 21; CoefficientList[Series[Sum[ArcTanh[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
nmax = 21; CoefficientList[Series[-Log[EllipticTheta[4, 0, x]]/2, {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[(n - 1)! DivisorSum[n, # &, OddQ[n/#] &], {n, 1, 21}]
A330388
Expansion of e.g.f. Sum_{k>=1} (-1)^(k + 1) * log(1 + x)^k / (k * (1 - log(1 + x)^k)).
Original entry on oeis.org
1, 0, 7, -37, 338, -2816, 28418, -340334, 5015080, -84244704, 1536606168, -29753884392, 609895549872, -13243687082016, 305507366834832, -7523621131117296, 198844500026698752, -5649686902983730560, 171839087043420258432, -5545292300345590210944
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[(-1)^(k + 1) Log[1 + x]^k/(k (1 - Log[1 + x]^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS1[n, k] (k - 1)! Sum[Mod[d, 2] d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1 + Log[1 + x]^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Dec 15 2019 *)
A300515
Expansion of e.g.f. log(Sum_{k>=0} q(k)*x^k/k!), where q(k) = number of partitions of k into distinct parts (A000009).
Original entry on oeis.org
0, 1, 0, 1, -3, 7, -24, 130, -748, 4446, -30694, 245586, -2131621, 19850237, -201363613, 2214638141, -26037523804, 325653856386, -4331545709166, 61069238694738, -908488414975896, 14220161323121232, -233746798117055047, 4025924893291859919, -72487584601341680720
Offset: 0
E.g.f.: A(x) = x/1! + x^3/3! - 3*x^4/4! + 7*x^5/5! - 24*x^6/6! + 130*x^7/7! - 748*x^8/8! + ...
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(
j*a(j)*binomial(n, j)*t(n-j), j=1..n-1)/n))(b)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 07 2018
-
nmax = 24; CoefficientList[Series[Log[Sum[PartitionsQ[k] x^k/k!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = PartitionsQ[n] - Sum[k Binomial[n, k] PartitionsQ[n - k] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 24}]
A347817
E.g.f.: Product_{k>=1} (1 + x^k)^sin(x).
Original entry on oeis.org
1, 0, 2, 3, 40, 80, 1760, 8211, 139256, 763272, 19466578, 147696835, 3372858476, 33370016316, 872184749046, 10340382875655, 289042962136272, 3884706041971728, 118640349946950738, 1911641854423398435, 59577007012206421356, 1086774235381609797540, 37138839666110194130670
Offset: 0
-
N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^sin(x))))
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(sin(x)*sum(k=1, N, sigma(k>>valuation(k, 2))*x^k/k))))
A347893
E.g.f.: Product_{k>=1} (1 + x^k)^cos(x).
Original entry on oeis.org
1, 1, 2, 9, 30, 195, 1545, 12474, 95564, 1199397, 14287845, 167518846, 2341450386, 34489552331, 540927170147, 10114629115798, 175935142966408, 3184271322683385, 68623817313870153, 1442553498798565142, 31856896467060026670, 787164874800260366287, 19097783293834170329239
Offset: 0
-
N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^cos(x))))
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(cos(x)*sum(k=1, N, sigma(k>>valuation(k, 2))*x^k/k))))
A347894
E.g.f.: Product_{k>=1} (1 + x^k)^tan(x).
Original entry on oeis.org
1, 0, 2, 3, 52, 110, 2690, 11676, 247952, 1434600, 37576168, 296088760, 7698854216, 78083294640, 2187100997328, 27174552638520, 806871808214016, 11698163585372736, 370098862531800000, 6300404006917434624, 208037772410558058624, 4032385785901175122560, 141272996628892396692096
Offset: 0
-
N=40; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1+x^k)^tan(x))))
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(tan(x)*sum(k=1, N, sigma(k>>valuation(k, 2))*x^k/k))))
A330387
Expansion of e.g.f. Sum_{k>=1} (-1)^(k + 1) * (exp(x) - 1)^k / (k * (1 - (exp(x) - 1)^k)).
Original entry on oeis.org
1, 2, 12, 62, 420, 3782, 40572, 463262, 5708820, 80773622, 1319927532, 23675250062, 447145154820, 8830952572262, 185694817024092, 4246473212654462, 105754322266866420, 2811068529133151702, 78039884046777282252, 2243558766132057764462
Offset: 1
-
nmax = 20; CoefficientList[Series[Sum[(-1)^(k + 1) (Exp[x] - 1)^k/(k (1 - (Exp[x] - 1)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
Table[Sum[StirlingS2[n, k] (k - 1)! Sum[Mod[d, 2] d, {d, Divisors[k]}], {k, 1, n}], {n, 1, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[Log[1 + (Exp[x] - 1)^k], {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Dec 15 2019 *)
A265022
Row sums of the Bell transform of the complementary Bell numbers (A264435).
Original entry on oeis.org
1, 1, 0, -2, -1, 12, 20, -113, -430, 1278, 10821, -10234, -317048, -384915, 10352420, 42836466, -340348905, -3180089128, 8045616512, 219303897655, 301713947470, -14401913182942, -84197219028827, 824481606288554, 11426928115546036, -23133559937561187
Offset: 0
-
Table[Sum[BellY[n, k, BellB[Range[n] - 1, -1]], {k, 0, n}], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
# uses[bell_transform from A264428]
def A265022_list(len):
uno = [1]*len
complementary_bell_numbers = [sum((-1)^n*b for (n, b) in enumerate (bell_transform(n, uno))) for n in range(len)]
return [sum(bell_transform(n, complementary_bell_numbers)) for n in range(len)]
A265022_list(26)
Showing 1-9 of 9 results.
Comments