cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A330504 Expansion of e.g.f. Sum_{k>=1} tanh(x^k).

Original entry on oeis.org

1, 2, 4, 24, 136, 480, 4768, 40320, 249856, 4112640, 39563008, 319334400, 6249389056, 82473431040, 1044235737088, 20922789888000, 355897293438976, 4408265775513600, 121616011523719168, 2757288942600192000, 31308290669925892096
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[Tanh[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    A155585[n_] := Sum[StirlingS2[n, k] (-2)^(n - k) k!, {k, 0, n}]; a[n_] := n! DivisorSum[n, A155585[#]/#! &]; Table[a[n], {n, 1, 21}]
    Table[n! DivisorSum[n, 2^(# + 1) (2^(# + 1) - 1) BernoulliB[# + 1]/(# + 1)! &, OddQ[#] &], {n, 1, 21}]

Formula

E.g.f.: Sum_{k>=1} (exp(2*x^k) - 1) / (exp(2*x^k) + 1).
a(n) = n! * Sum_{d|n} A155585(d) / d!.
a(n) = n! * Sum_{d|n, d odd} 2^(d + 1) * (2^(d + 1) - 1) * Bernoulli(d + 1) / (d + 1)!.

A330506 Expansion of e.g.f. Sum_{k>=1} arcsin(x^k).

Original entry on oeis.org

1, 2, 7, 24, 129, 840, 5265, 40320, 434385, 3900960, 40809825, 558835200, 6335076825, 91070179200, 1641957141825, 20922789888000, 359796258446625, 7663952552256000, 122832552380162625, 2615369658789888000, 62315614994643635625
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[ArcSin[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! DivisorSum[n, ((# - 2)!!)^2/#! &, OddQ[#] &], {n, 1, 21}]

Formula

a(n) = n! * Sum_{d|n, d odd} ((d - 2)!!)^2 / d!.

A330511 Expansion of e.g.f. Sum_{k>=1} arctan(x^k).

Original entry on oeis.org

1, 2, 4, 24, 144, 480, 4320, 40320, 282240, 4354560, 36288000, 319334400, 6706022400, 74724249600, 1046139494400, 20922789888000, 376610217984000, 4979623993344000, 115242726703104000, 2919482409811968000, 29194824098119680000
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[ArcTan[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[(n - 1)! DivisorSum[n, (-1)^((n/# - 1)/2) # &, OddQ[n/#] &], {n, 1, 21}]
  • PARI
    a(n) = (n-1)!*sumdiv(n, d, if (n/d % 2, (-1)^((n/d - 1)/2)*d)); \\ Michel Marcus, Dec 17 2019

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} (-1)^(j + 1) * x^(i*(2*j - 1)) / (2*j - 1).
a(n) = (n - 1)! * Sum_{d|n, n/d odd} (-1)^((n/d - 1)/2) * d.

A330512 Expansion of e.g.f. Sum_{k>=1} arcsinh(x^k).

Original entry on oeis.org

1, 2, 5, 24, 129, 600, 4815, 40320, 313425, 3900960, 39023775, 399168000, 6335076825, 83286403200, 1169542749375, 20922789888000, 359796258446625, 5529827983680000, 120457648437501375, 2615369658789888000, 40723609672075955625
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[ArcSinh[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! DivisorSum[n, (-1)^((# - 1)/2) ((# - 2)!!)^2/#! &, OddQ[#] &], {n, 1, 21}]

Formula

E.g.f.: Sum_{k>=1} log(x^k + sqrt(1 + x^(2*k))).
a(n) = n! * Sum_{d|n, d odd} (-1)^((d - 1)/2) * ((d - 2)!!)^2 / d!.
Showing 1-4 of 4 results.