cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330505 Expansion of e.g.f. Sum_{k>=1} arctanh(x^k).

Original entry on oeis.org

1, 2, 8, 24, 144, 960, 5760, 40320, 524160, 4354560, 43545600, 638668800, 6706022400, 99632332800, 2092278988800, 20922789888000, 376610217984000, 9247873130496000, 128047474114560000, 2919482409811968000, 77852864261652480000
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[ArcTanh[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    nmax = 21; CoefficientList[Series[-Log[EllipticTheta[4, 0, x]]/2, {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[(n - 1)! DivisorSum[n, # &, OddQ[n/#] &], {n, 1, 21}]

Formula

E.g.f.: -log(theta_4(x)) / 2.
E.g.f.: (1/2) * Sum_{k>=1} log((1 + x^k) / (1 - x^k)).
E.g.f.: log(Product_{k>=1} ((1 + x^k) / (1 - x^k))^(1/2)).
E.g.f.: Sum_{k>=1} x^(2*k - 1) / ((2*k - 1) * (1 - x^(2*k - 1))).
exp(2 * Sum_{n>=1} a(n) * x^n / n!) = g.f. of A015128.
a(n) = (n - 1)! * Sum_{d|n, n/d odd} d.

A330527 Expansion of e.g.f. Sum_{k>=1} (sec(x^k) + tan(x^k) - 1).

Original entry on oeis.org

1, 3, 8, 41, 136, 1381, 5312, 70265, 491776, 5977561, 40270592, 1021246445, 6249389056, 135671657941, 1919826163712, 36481192888145, 355897293438976, 12422529973051441, 121674189293944832, 4514836332133978325
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[(Sec[x^k] + Tan[x^k] - 1), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[n! DivisorSum[n, If[EvenQ[#], Abs[EulerE[#]], Abs[(2^(# + 1) (2^(# + 1) - 1) BernoulliB[# + 1])/(# + 1)]]/#! &], {n, 1, 20}]
  • Python
    from math import factorial
    from itertools import accumulate
    def A330527(n):
        c = a = factorial(n)
        blist = (0,1)
        for d in range(2,n+1):
            blist = tuple(accumulate(reversed(blist),initial=0))
            if n % d == 0:
                c += a*blist[-1]//factorial(d)
        return c # Chai Wah Wu, Apr 19 2023

Formula

a(n) = n! * Sum_{d|n} A000111(d) / d!.

A330511 Expansion of e.g.f. Sum_{k>=1} arctan(x^k).

Original entry on oeis.org

1, 2, 4, 24, 144, 480, 4320, 40320, 282240, 4354560, 36288000, 319334400, 6706022400, 74724249600, 1046139494400, 20922789888000, 376610217984000, 4979623993344000, 115242726703104000, 2919482409811968000, 29194824098119680000
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Sum[ArcTan[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
    Table[(n - 1)! DivisorSum[n, (-1)^((n/# - 1)/2) # &, OddQ[n/#] &], {n, 1, 21}]
  • PARI
    a(n) = (n-1)!*sumdiv(n, d, if (n/d % 2, (-1)^((n/d - 1)/2)*d)); \\ Michel Marcus, Dec 17 2019

Formula

E.g.f.: Sum_{i>=1} Sum_{j>=1} (-1)^(j + 1) * x^(i*(2*j - 1)) / (2*j - 1).
a(n) = (n - 1)! * Sum_{d|n, n/d odd} (-1)^((n/d - 1)/2) * d.
Showing 1-3 of 3 results.