A338870 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = exp(Sum_{n>0} u*d(n)*x^n/n!), where d(n) is the number of divisors of n.
1, 2, 1, 2, 6, 1, 3, 20, 12, 1, 2, 55, 80, 20, 1, 4, 142, 405, 220, 30, 1, 2, 322, 1792, 1785, 490, 42, 1, 4, 779, 7224, 12152, 5810, 952, 56, 1, 3, 1608, 27323, 73920, 56532, 15498, 1680, 72, 1, 4, 3894, 99690, 414815, 482160, 204204, 35910, 2760, 90, 1
Offset: 1
Examples
exp(Sum_{n>0} u*d(n)*x^n/n!) = 1 + u*x + (2*u+u^2)*x^2/2! + (2*u+6*u^2+u^3)*x^3/3! + ... . Triangle begins: 1; 2, 1; 2, 6, 1; 3, 20, 12, 1; 2, 55, 80, 20, 1; 4, 142, 405, 220, 30, 1; 2, 322, 1792, 1785, 490, 42, 1; 4, 779, 7224, 12152, 5810, 952, 56, 1; ...
Links
- Seiichi Manyama, Rows n = 1..100, flattened
- Peter Luschny, The Bell transform.
Crossrefs
Programs
-
Mathematica
T[n_, 0] := Boole[n == 0]; T[n_, k_] := T[n, k] = Sum[Boole[j > 0] * Binomial[n - 1, j - 1] * DivisorSigma[0, j] * T[n - j, k - 1], {j, 0, n - k + 1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
PARI
a(n) = if(n<1, 0, numdiv(n)); T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
Formula
T(n; u) = Sum_{k=1..n} T(n,k)*u^k is given by T(n; u) = u * Sum_{k=1..n} binomial(n-1,k-1)*d(k)*T(n-k; u), T(0; u) = 1.
T(n,k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} d(i_j)/(i_j)!.
Comments