A341243
Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^4.
Original entry on oeis.org
1, 0, 4, 4, 10, 16, 26, 44, 63, 100, 144, 212, 297, 420, 584, 796, 1081, 1452, 1940, 2556, 3355, 4372, 5668, 7288, 9327, 11892, 15076, 19012, 23884, 29904, 37276, 46284, 57276, 70680, 86918, 106528, 130220, 158784, 193054, 234076, 283178, 341824, 411616, 494512, 592933
Offset: 4
Cf.
A000700,
A001482,
A022599,
A112160,
A327382,
A338463,
A341222,
A341241,
A341244,
A341245,
A341246,
A341247,
A341251.
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..48); # Alois P. Heinz, Feb 07 2021
-
nmax = 48; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &
A060642
Triangle read by rows: row n lists number of ordered partitions into k parts of partitions of n.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 22, 21, 8, 1, 11, 43, 59, 36, 10, 1, 15, 80, 144, 124, 55, 12, 1, 22, 141, 321, 362, 225, 78, 14, 1, 30, 240, 669, 944, 765, 370, 105, 16, 1, 42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1, 56, 640, 2511, 5100, 6215, 4848, 2478, 824, 171, 20, 1
Offset: 1
Table begins:
1;
2, 1;
3, 4, 1;
5, 10, 6, 1;
7, 22, 21, 8, 1;
11, 43, 59, 36, 10, 1;
15, 80, 144, 124, 55, 12, 1;
22, 141, 321, 362, 225, 78, 14, 1;
30, 240, 669, 944, 765, 370, 105, 16, 1;
42, 397, 1323, 2266, 2287, 1437, 567, 136, 18, 1;
...
For n=4 there are 5 partitions of 4, namely 4, 31, 22, 211, 11111. There are 5 ways to pick 1 of them; 10 ways to partition one of them into 2 ordered parts: 3,1; 1,3; 2,2; 21,1; 1,21; 2,11; 11,2; 111,1; 1,111; 11,11; 6 ways to partition one of them into 3 ordered parts: 2,1,1; 1,2,1; 1,1,2; 11,1,1; 1,11,1; 1,1,11; and one way to partition one of them into 4 ordered parts: 1,1,1,1. So row 4 is 5,10,6,1.
-
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma](j), j=1..n)/n)
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 12 2015
# Uses function PMatrix from A357368. Adds row and column for n, k = 0.
PMatrix(10, combinat:-numbpart); # Peter Luschny, Oct 07 2022
-
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[ T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
A341221
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^3.
Original entry on oeis.org
1, 6, 21, 59, 144, 321, 669, 1323, 2511, 4604, 8202, 14253, 24241, 40449, 66363, 107234, 170910, 269004, 418566, 644436, 982536, 1484482, 2223942, 3305484, 4876620, 7144455, 10398123, 15039564, 21624678, 30919323, 43973708, 62222844, 87619212, 122810585
Offset: 3
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 3):
seq(a(n), n=3..36); # Alois P. Heinz, Feb 07 2021
-
nmax = 36; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
A341223
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^5.
Original entry on oeis.org
1, 10, 55, 225, 765, 2287, 6215, 15680, 37265, 84300, 182933, 383070, 777705, 1536490, 2963120, 5592060, 10349465, 18817760, 33665870, 59341785, 103176877, 177131330, 300530125, 504318530, 837632700, 1377874861, 2246061540, 3630059510, 5819556060, 9258393655, 14622472250
Offset: 5
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 5):
seq(a(n), n=5..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^5, {x, 0, nmax}], x] // Drop[#, 5] &
A341225
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^6.
Original entry on oeis.org
1, 12, 78, 370, 1437, 4848, 14719, 41148, 107610, 266296, 628941, 1427118, 3127369, 6646440, 13746081, 27744926, 54782271, 106029918, 201512970, 376630680, 693161334, 1257641676, 2251764699, 3982196910, 6961522279, 12038699766, 20607718317, 34938910360
Offset: 6
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 6):
seq(a(n), n=6..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &
A341226
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^7.
Original entry on oeis.org
1, 14, 105, 567, 2478, 9317, 31269, 95965, 273896, 735966, 1879059, 4591342, 10797290, 24549924, 54171729, 116368308, 243991034, 500446135, 1006039762, 1985480063, 3852429483, 7358212272, 13850448185, 25718189483, 47150564517, 85417834621, 153015826880
Offset: 7
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 7):
seq(a(n), n=7..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^7, {x, 0, nmax}], x] // Drop[#, 7] &
A341227
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^8.
Original entry on oeis.org
1, 16, 136, 824, 4004, 16608, 61076, 204200, 631714, 1831752, 5027312, 13159104, 33049090, 80030808, 187613348, 427201176, 947520103, 2051989360, 4347996772, 9030416704, 18412343832, 36905322248, 72807201940, 141525042736, 271321432489, 513454659312
Offset: 8
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 8):
seq(a(n), n=8..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^8, {x, 0, nmax}], x] // Drop[#, 8] &
A341228
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^9.
Original entry on oeis.org
1, 18, 171, 1149, 6147, 27891, 111567, 403722, 1345896, 4189334, 12300174, 34337403, 91721385, 235645425, 584759880, 1406588073, 3289489002, 7498465029, 16697615817, 36391839264, 77758115283, 163123713621, 336420277812, 682877289213, 1365674365197, 2693384989056
Offset: 9
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 9):
seq(a(n), n=9..34); # Alois P. Heinz, Feb 07 2021
-
nmax = 34; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^9, {x, 0, nmax}], x] // Drop[#, 9] &
A341365
Expansion of (1 / theta_4(x) - 1)^4 / 16.
Original entry on oeis.org
1, 8, 40, 156, 520, 1552, 4262, 10960, 26716, 62276, 139744, 303412, 640001, 1315832, 2644004, 5204044, 10052182, 19086348, 35672516, 65708116, 119409576, 214289116, 380068582, 666723748, 1157550524, 1990230968, 3390558072, 5726064688, 9590759624, 15938198484, 26289242026
Offset: 4
Cf.
A002448,
A004405,
A014968,
A015128,
A063730,
A284286,
A327382,
A338223,
A341222,
A341364,
A341366,
A341367,
A341368,
A341369,
A341370.
-
g:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i=1, 0,
g(n, i-1))+add(2*g(n-i*j, i-1), j=`if`(i=1, n, 1)..n/i))
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0,
g(n$2)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..34); # Alois P. Heinz, Feb 10 2021
-
nmax = 34; CoefficientList[Series[(1/EllipticTheta[4, 0, x] - 1)^4/16, {x, 0, nmax}], x] // Drop[#, 4] &
nmax = 34; CoefficientList[Series[(1/16) (-1 + Product[(1 + x^k)/(1 - x^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &
A341236
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^10.
Original entry on oeis.org
1, 20, 210, 1550, 9055, 44624, 192945, 751480, 2686155, 8934560, 27946335, 82884860, 234636435, 637416140, 1669127130, 4228739712, 10398140075, 24882425770, 58080468790, 132508486900, 296005537183, 648445364080, 1394961003490, 2950516502980, 6142674032345, 12599932782780
Offset: 10
Cf.
A000041,
A023009,
A048574,
A327388,
A341221,
A341222,
A341223,
A341225,
A341226,
A341227,
A341228.
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 10):
seq(a(n), n=10..35); # Alois P. Heinz, Feb 07 2021
-
nmax = 35; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &
Showing 1-10 of 10 results.
Comments