A246828 Decimal expansion of a constant related to A055887.
2, 6, 9, 8, 3, 2, 9, 1, 0, 6, 4, 7, 4, 2, 1, 1, 2, 3, 1, 2, 6, 3, 9, 9, 8, 6, 6, 6, 1, 8, 8, 3, 7, 6, 3, 3, 0, 7, 1, 3, 4, 6, 5, 1, 2, 5, 9, 1, 3, 9, 8, 6, 3, 5, 6, 7, 6, 9, 0, 1, 2, 3, 1, 1, 7, 8, 1, 9, 8, 6, 5, 9, 3, 6, 6, 9, 5, 0, 5, 5, 9, 4, 5, 1, 3, 6, 6, 4, 7, 6, 6, 5, 2, 0, 2, 2, 0, 3, 5, 5, 8, 0, 0, 7, 7
Offset: 1
Examples
2.698329106474211231263998666188376330713465125913986356769...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..240
Programs
-
Mathematica
RealDigits[1/x /. FindRoot[QPochhammer[x] == 1/2, {x, 1/2}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, May 23 2018 *)
Formula
Equals lim n -> infinity A055887(n)^(1/n).
Equals lim n -> infinity A095975(n)^(1/n).
Equals lim n -> infinity A141799(n)^(1/n).
Equals lim n -> infinity A131408(n)^(1/n).
Root of the equation QPochhammer[x] = 1/2. - Vaclav Kotesovec, May 23 2018
Comments