cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 235 results. Next

A305841 Product_{n>=1} (1 + x^n)^a(n) = g.f. of A001970 (partitions of partitions).

Original entry on oeis.org

1, 3, 3, 8, 7, 14, 15, 30, 30, 49, 56, 91, 101, 150, 176, 261, 297, 415, 490, 676, 792, 1058, 1255, 1666, 1958, 2537, 3010, 3868, 4565, 5780, 6842, 8610, 10143, 12607, 14883, 18392, 21637, 26505, 31185, 38014, 44583, 53966, 63261, 76233, 89134, 106813, 124754
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 11 2018

Keywords

Comments

Inverse weigh transform of A001970.

Examples

			(1 + x) * (1 + x^2)^3 * (1 + x^3)^3 * (1 + x^4)^8 * (1 + x^5)^7 * ... * (1 + x^n)^a(n) * ... = 1/((1 - x) * (1 - x^2)^2 * (1 - x^3)^3 * (1 - x^4)^5 * (1 - x^5)^7 * ... * (1 - x^k)^p(k) * ...).
		

Crossrefs

Programs

  • Mathematica
    nn = 40; f[x_] := Product[(1 + x^n)^a[n], {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - x^k)^PartitionsP[k], {k, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

Formula

Product_{n>=1} (1 + x^n)^a(n) = Product_{k>=1} 1/(1 - x^k)^p(k), where p(k) = number of partitions of k (A000041).

A037338 Erroneous version of the sequence A001970(n) - 2.

Original entry on oeis.org

1, 4, 12, 24, 50, 100, 193
Offset: 2

Views

Author

Keywords

References

  • J. J. Sylvester, An Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag. 1 (1851), 119-140. Reprinted in Collected Papers, Vol. 1. See p. 239.
  • J. J. Sylvester, Note on the 'Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag., Vol. VII (1854), pp. 331-334. Reprinted in Collected Papers, Vol. 2, pp. 30-33.

A000219 Number of plane partitions (or planar partitions) of n.

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, 2485, 4167, 6879, 11297, 18334, 29601, 47330, 75278, 118794, 186475, 290783, 451194, 696033, 1068745, 1632658, 2483234, 3759612, 5668963, 8512309, 12733429, 18974973, 28175955, 41691046, 61484961, 90379784, 132441995, 193487501, 281846923
Offset: 0

Views

Author

Keywords

Comments

Two-dimensional partitions of n in which no row or column is longer than the one before it (compare A001970). E.g., a(4) = 13:
4.31.3.22.2.211.21..2.1111.111.11.11.1 but not 2
.....1....2.....1...1......1...11.1..1........ 11
....................1.............1..1
.....................................1
In the above, one also must require that rows & columns are nondecreasing, e.g., [1,1; 2] is also forbidden (which implies that row and column lengths are nondecreasing, if empty cells are identified with cells filled with 0's). - M. F. Hasler, Sep 22 2018
Can also be regarded as number of "safe pilings" of cubes in the corner of a room: the height should not increase away from the corner. - Wouter Meeussen
Also number of partitions of n objects of 2 colors, each part containing at least one black object; see example. - Christian G. Bower, Jan 08 2004
Number of partitions of n into 1 type of part 1, 2 types of part 2, ..., k types of part k. E.g., n=3 gives 111, 12, 12', 3, 3', 3''. - Jon Perry, May 27 2004
The bijection between the partitions in the two preceding comments goes by identifying a part with k black objects with a part of type k. - David Scambler and Joerg Arndt, May 01 2013
Can also be regarded as the number of Jordan canonical forms for an n X n matrix. (I.e., a 5 X 5 matrix has 24 distinct Jordan canonical forms, dependent on the algebraic and geometric multiplicity of each eigenvalue.) - Aaron Gable (agable(AT)hmc.edu), May 26 2009
(1/n) * convolution product of n terms * A001157 (sum of squares of divisors of n): (1, 5, 10, 21, 26, 50, 50, 85, ...) = a(n). As shown by [Bressoud, p. 12]: 1/6 * [1*24 + 5*13 + 10*6 + 21*3 + 26*1 + 50*1] = 288/6 = 48. - Gary W. Adamson, Jun 13 2009
Convolved with the aerated version (1, 0, 1, 0, 3, 0, 6, 0, 13, ...) = A026007: (1, 1, 2, 5, 8, 16, 28, 49, 83, ...). - Gary W. Adamson, Jun 13 2009
Starting with offset 1 = row sums of triangle A162453. - Gary W. Adamson, Jul 03 2009
Unfortunately, Wright's formula is also incomplete in the paper by G. Almkvist: "Asymptotic formulas and generalized Dedekind sums", p. 344, (the denominator should have sqrt(3*Pi) not sqrt(Pi)). This error was already corrected in the paper by Steven Finch: "Integer Partitions". - Vaclav Kotesovec, Aug 17 2015
Also the number of non-isomorphic weight-n chains of multisets whose dual is also a chain of multisets. The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. The weight of a multiset partition is the sum of sizes of its parts. - Gus Wiseman, Sep 25 2018

Examples

			A planar partition of 13:
  4 3 1 1
  2 1
  1
a(5) = (1/5!)*(sigma_2(1)^5+10*sigma_2(2)*sigma_2(1)^3+20*sigma_2(3)*sigma_2(1)^2+ 15*sigma_2(1)*sigma_2(2)^2+30*sigma_2(4)*sigma_2(1)+20*sigma_2(2)*sigma_2(3)+24*sigma_2(5)) = 24. - _Vladeta Jovovic_, Jan 10 2003
From _David Scambler_ and _Joerg Arndt_, May 01 2013: (Start)
There are a(4) = 13 partitions of 4 objects of 2 colors ('b' and 'w'), each part containing at least one black object:
1 black part:
  [ bwww ]
2 black parts:
  [ bbww ]
  [ bww, b ]
  [ bw, bw ]
3 black parts:
  [ bbbw ]
  [ bbw, b ]
  [ bb, bw ]
(but not: [bw, bb ] )
  [ bw, b, b ]
4 black parts:
  [ bbbb ]
  [ bbb, b ]
  [ bb, bb ]
  [ bb, b, b ]
  [ b, b, b, b ]
(End)
From _Geoffrey Critzer_, Nov 29 2014: (Start)
The corresponding partitions of the integer 4 are:
  4'''
  4''
  3'' + 1
  2' + 2'
  4'
  3' + 1
  2 + 2'
  2' + 1 + 1
  4
  3 + 1
  2 + 2
  2 + 1 + 1
  1 + 1 + 1 + 1.
(End)
From _Gus Wiseman_, Sep 25 2018: (Start)
Non-isomorphic representatives of the a(4) = 13 chains of multisets whose dual is also a chain of multisets:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1},{1,1,1}}
  {{2},{1,2,2}}
  {{3},{1,2,3}}
  {{1,1},{1,1}}
  {{1,2},{1,2}}
  {{1},{1},{1,1}}
  {{2},{2},{1,2}}
  {{1},{1},{1},{1}}
(End)
G.f. = 1 + x + 3*x^2 + 6*x^3 + 13*x^4 + 24*x^5 + 48*x^6 + 86*x^7 + 160*x^8 + ...
		

References

  • G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.
  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 241.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; pp(n) on p. 10.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575.
  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.6).
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (5.4.5).
  • P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Royal Soc., 211 (1912), 345-373.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - N. J. A. Sloane, May 21 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Differences: A191659, A191660, A191661.
Row sums of A089353 and A091438 and A091298.
Column k=1 of A144048. - Alois P. Heinz, Nov 02 2012
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Julia
    using Nemo, Memoize
    @memoize function a(n)
        if n == 0 return 1 end
        s = sum(a(n - j) * divisor_sigma(j, 2) for j in 1:n)
        return div(s, n)
    end
    [a(n) for n in 0:20] # Peter Luschny, May 03 2020
    
  • Maple
    series(mul((1-x^k)^(-k),k=1..64),x,63);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 17 2015
  • Mathematica
    CoefficientList[Series[Product[(1 - x^k)^-k, {k, 64}], {x, 0, 64}], x]
    Zeta[3]^(7/36)/2^(11/36)/Sqrt[3 Pi]/Glaisher E^(3 Zeta[3]^(1/3) (n/2)^(2/3) + 1/12)/n^(25/36) (* asymptotic formula after Wright; Vaclav Kotesovec, Jun 23 2014 *)
    a[0] = 1; a[n_] := a[n] = Sum[a[n - j] DivisorSigma[2, j], {j, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    CoefficientList[Series[Exp[Sum[DivisorSigma[2, n] x^n/n, {n, 50}]], {x, 0, 50}], x] (* Eric W. Weisstein, Feb 01 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( exp( sum( k=1, n, x^k / (1 - x^k)^2 / k, x * O(x^n))), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^-k), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec( prod(n=1,N, (1-x^n)^-n) ) \\ Joerg Arndt, Mar 25 2014
    
  • PARI
    A000219(n)=#PlanePartitions(n) \\ See A091298 for PlanePartitions(). For illustrative use: much slower than the above. - M. F. Hasler, Sep 24 2018
    
  • Python
    from sympy import cacheit
    from sympy.ntheory import divisor_sigma
    @cacheit
    def A000219(n):
        if n <= 1:
            return 1
        return sum(A000219(n - k) * divisor_sigma(k, 2) for k in range(1, n + 1)) // n
    print([A000219(n) for n in range(20)])
    # R. J. Mathar, Oct 18 2009
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: n)
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k >= 1} 1/(1 - x^k)^k. - MacMahon, 1912.
Euler transform of sequence [1, 2, 3, ...].
a(n) ~ (c_2 / n^(25/36)) * exp( c_1 * n^(2/3) ), where c_1 = A249387 = 2.00945... and c_2 = A249386 = 0.23151... - Wright, 1931. Corrected Jun 01 2010 by Rod Canfield - see Mutafchiev and Kamenov. The exact value of c_2 is e^(2c)*2^(-11/36)*zeta(3)^(7/36)*(3*Pi)^(-1/2), where c = Integral_{y=0..inf} (y*log(y)/(e^(2*Pi*y)-1))dy = (1/2)*zeta'(-1).
The exact value of c_1 is 3*2^(-2/3)*Zeta(3)^(1/3) = 2.0094456608770137530649... - Vaclav Kotesovec, Sep 14 2014
a(n) = (1/n) * Sum_{k=1..n} a(n-k)*sigma_2(k), n > 0, a(0)=1, where sigma_2(n) = A001157(n) = sum of squares of divisors of n. - Vladeta Jovovic, Jan 20 2002
G.f.: exp(Sum_{n>0} sigma_2(n)*x^n/n). a(n) = Sum_{pi} Product_{i=1..n} binomial(k(i)+i-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Jan 10 2003
From Vaclav Kotesovec, Nov 07 2016: (Start)
More precise asymptotics: a(n) ~ Zeta(3)^(7/36) * exp(3 * Zeta(3)^(1/3) * (n/2)^(2/3) + 1/12) / (A * sqrt(3*Pi) * 2^(11/36) * n^(25/36))
* (1 + c1/n^(2/3) + c2/n^(4/3) + c3/n^2), where
c1 = -0.23994424421250649114273759... = -277/(864*(2*Zeta(3))^(1/3)) - Zeta(3)^(2/3)/(1440*2^(1/3))
c2 = -0.02576771365117401620018082... = 353*Zeta(3)^(1/3)/(248832*2^(2/3)) - 17*Zeta(3)^(4/3)/(3225600*2^(2/3)) - 71575/(1492992*(2*Zeta(3))^(2/3))
c3 = -0.00533195302658826100834286... = -629557/859963392 - 42944125/(7739670528*Zeta(3)) + 14977*Zeta(3)/1114767360 - 22567*Zeta(3)^2/250822656000
and A = A074962 is the Glaisher-Kinkelin constant.
(End)

Extensions

Corrected by N. J. A. Sloane, Jul 29 2006
Minor edits by Vaclav Kotesovec, Oct 27 2014

A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Comments

These are different from plane partitions.
For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006
Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
		

Crossrefs

The strict case is A296122.
Row sums of A321449.
Column k=2 of A323718.
Without singletons we have A327769, A358828, A358829.
For odd lengths we have A358823, A358824.
For distinct lengths we have A358830, A358912.
For strict partitions see A358914, A382524.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015
  • Mathematica
    Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

Formula

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

A089259 Expansion of Product_{m>=1} 1/(1-x^m)^A000009(m).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 22, 36, 61, 101, 166, 267, 433, 686, 1088, 1709, 2671, 4140, 6403, 9824, 15028, 22864, 34657, 52288, 78646, 117784, 175865, 261657, 388145, 573936, 846377, 1244475, 1825170, 2669776, 3895833, 5671127, 8236945, 11936594, 17261557, 24909756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2003

Keywords

Comments

Number of complete set partitions of the integer partitions of n. This is the Euler transform of A000009. If we change the combstruct command from unlabeled to labeled, then we get A000258. - Thomas Wieder, Aug 01 2008
Number of set multipartitions (multisets of sets) of integer partitions of n. Also a(n) < A270995(n) for n>5. - Gus Wiseman, Apr 10 2016

Examples

			From _Gus Wiseman_, Oct 22 2018: (Start)
The a(6) = 22 set multipartitions of integer partitions of 6:
  (6)  (15)    (123)      (12)(12)      (1)(1)(1)(12)    (1)(1)(1)(1)(1)(1)
       (24)    (1)(14)    (1)(1)(13)    (1)(1)(1)(1)(2)
       (1)(5)  (1)(23)    (1)(2)(12)
       (2)(4)  (2)(13)    (1)(1)(1)(3)
       (3)(3)  (3)(12)    (1)(1)(2)(2)
               (1)(1)(4)
               (1)(2)(3)
               (2)(2)(2)
(End)
		

Crossrefs

Programs

  • Maple
    with(combstruct): A089259:= [H, {H=Set(T, card>=1), T=PowerSet (Sequence (Z, card>=1), card>=1)}, unlabeled]; 1, seq (count (A089259, size=j), j=1..16); # Thomas Wieder, Aug 01 2008
    # second Maple program:
    with(numtheory):
    b:= proc(n, i)
          if n<0 or n>i*(i+1)/2 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n,i):= b(n-i, i-1) +b(n, i-1)
          fi
        end:
    a:= proc(n) option remember; `if` (n=0, 1,
           add(add(d* b(d, d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 11 2011
  • Mathematica
    max = 40; CoefficientList[Series[Product[1/(1-x^m)^PartitionsQ[m], {m, 1, max}], {x, 0, max}], x] (* Jean-François Alcover, Mar 24 2014 *)
    b[n_, i_] := b[n, i] = Which[n<0 || n>i*(i+1)/2, 0, n == 0, 1, i<1, 0, True, b[n-i, i-1] + b[n, i-1]]; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d* b[d, d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Feb 13 2016, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat([1], EulerT(Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)))} \\ Andrew Howroyd, Oct 26 2018

A006171 Number of factorization patterns of polynomials of degree n over integers.

Original entry on oeis.org

1, 1, 3, 5, 11, 17, 34, 52, 94, 145, 244, 370, 603, 899, 1410, 2087, 3186, 4650, 6959, 10040, 14750, 21077, 30479, 43120, 61574, 86308, 121785, 169336, 236475, 326201, 451402, 618135, 848209, 1153733, 1571063, 2123325, 2871419, 3857569, 5182999, 6924303
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are unlimited distinguishable but unlabeled objects of each size. E.g., in splitting 2 into two parts of size 1, we distinguish whether the same object is used for each part. Also number of factorization patterns over rationals, or many other UFDs (but not over real or complex numbers). - Franklin T. Adams-Watters, Jun 19 2006
Equals the "aerate and convolve" convergent of A000041: (1, 1, 2, 3, 5, 7, 11, ...) * (1, 0, 1, 0, 2, 0, 3, 0, 5, ...) * (1, 0, 0, 1, 0, 0, 2, 0, 0, 3, ...). - Gary W. Adamson, Jun 16 2009
Also equals the number of distinct (up to unitary similarity) unital *-subalgebras of the n X n complex matrices. A unital *-subalgebra is a subspace that is closed under multiplication and the conjugate transpose, and which contains the identity matrix (see A215905 and A215925). - Nathaniel Johnston, Aug 27 2012
Also equals the number of partitions having parts consisting of runs of equal parts. - Gregory L. Simay, May 25 2017
Also equals the number of generalized partitions of n when there are d(a) different types of a, (a = 1,2,3,...), where d(n) is the number of divisors of n. a(3)=5 because there are 5 partitions of 3 with "d(a) copies of a", namely (3_1), (3_2), (2_1, 1_1), (2_2, 1_1), (1_1, 1_1, 1_1). - Augustine O. Munagi, Jun 13 2022

Examples

			For n=3 we have 3 = (3*1) = (1*3) = (2*1) + (1*1) = (1*2) + (1*1) = (1*1) + (1*1) + (1*1) so a(3)=5.
For n=4 we have the following 11 partitions, with the additive runs indicated by "[]": [4], [3]+[1], [2+2], [2]+[2], [2]+[1+1], [2]+[1]+[1], [1+1+1+1], [1+1+1]+[1], [1+1]+[1+1], [1+1]+[1]+[1], [1]+[1]+[1]+[1]. - _Gregory L. Simay_, May 25 2017
		

References

  • R. A. Hultquist, G. L. Mullen and H. Niederreiter, Association schemes and derived PBIB designs of prime power order, Ars. Combin., 25 (1988), 65-82.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(tau): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    max = 50; gf[x_] := Product[(1 - x^k)^-DivisorSigma[0, k], {k, 1, max}]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011 *)
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2018, the fastest *)
    nmax = 50; CoefficientList[Series[Product[Sum[PartitionsP[k]*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 26 2020 *)
  • PARI
    {a(n) = if(n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x * O(x^n))^numdiv(k)), n))}; /* Michael Somos, Apr 01 2003 */
    
  • PARI
    N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^j)); Vec(gf) \\ Joerg Arndt, May 03 2008
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^m+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */
    
  • PARI
    {A060640(n)=sumdiv(n, d, d*sigma(n/d))}
    {a(n)=polcoeff(exp(sum(m=1,n+1,A060640(m)*x^m/m)+x*O(x^n)),n)} /* Paul D. Hanna, Oct 19 2011 */

Formula

From Vladeta Jovovic, Apr 21 2001: (Start)
Euler transform of tau(n), tau(n) = the number of divisors of n, cf. A000005.
G.f.: Product_{k>=1} (1 - x^k)^(-tau(k)).
a(n) = 1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k) = Sum_{d|k} d*tau(d), cf. A060640. (End)
a(n) = Sum_{ partition of n} product p(k(i)), where p(n) is the partition function A000041. E.g., for the partition [4,2^3,1^4], the product is p(1)*p(3)*p(4) = 1*3*5 = 15. - Franklin T. Adams-Watters, Jun 19 2006
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1-x^n)/n ). - Paul D. Hanna, Mar 28 2009
From Paul D. Hanna, Oct 19 2011: (Start)
Logarithmic derivative yields A060640.
G.f.: A(x) = exp( Sum_{n>=1} A060640(n)*x^n/n ), where A060640(n) = Sum_{d|n} d*sigma(n/d). (End)
G.f.: 1/Product_{n>=1} E(q^n) where E(q) = Product_{n>=1} (1-q^n). - Joerg Arndt, Feb 27 2014
log(a(n)) ~ Pi * sqrt(n*log(n)/3) [Brigham, 1950]. - Vaclav Kotesovec, Jan 04 2017
a(n) ~ exp(Pi*sqrt(n/(3*log(n))) * (log(n) - log(log(n))/2 + gamma + 6*Zeta'(2)/Pi^2 + log(2/Pi) + log(3)/2)) * Pi^(1/4) * (log(n))^(1/8) / (2^(3/4) * 3^(1/8) * n^(5/8)), where gamma is the Euler-Mascheroni constant (A001620) and Zeta'(2) = -0.9375482543158437537... (see A073002) [user Lucia, MathOverflow, 2014]. - Vaclav Kotesovec, Jan 05 2017

A270995 Expansion of Product_{k>=1} 1/(1 - A000009(k)*x^k).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 23, 37, 64, 108, 180, 290, 488, 772, 1251, 2001, 3180, 4982, 7913, 12261, 19162, 29669, 45804, 70187, 108029, 164276, 250267, 379439, 574067, 864044, 1302169, 1949050, 2917900, 4352796, 6481627, 9620256, 14274080, 21090608, 31142909
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 28 2016

Keywords

Comments

The number of ways a number can be partitioned into not necessarily distinct parts and then each part is partitioned into distinct parts. Also a(n) > A089259(n) for n>5. - Gus Wiseman, Apr 10 2016
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into distinct constant multisets of a multiset of length n that covers an initial interval of positive integers with weakly decreasing multiplicities. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(4) = 7 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{2}} {{1},{1,1}} {{1},{1,1,1}}
{{2},{1,1}} {{1,1},{2,2}}
{{1},{2},{3}} {{2},{1,1,1}}
{{1},{2},{1,1}}
{{2},{3},{1,1}}
{{1},{2},{3},{4}}
The weakly normal non-strict version is A055887.
The non-strict version is A063834.
The weakly normal version is A304969.
(End)

Examples

			a(6)=23: {(6), (5)(1), (51), (4)(2), (42), (4)(1)(1), (41)(1), (3)(3), (3)(2)(1), (3)(21), (32)(1), (31)(2), (21)(3), (321), (3)(1)(1)(1), (31)(1)(1), (2)(2)(2), (2)(2)(1)(1), (21)(2)(1), (21)(21), (2)(1)(1)(1)(1), (21)(1)(1)(1), (1)(1)(1)(1)(1)(1)}.
		

Crossrefs

Cf. A063834 (twice partitioned numbers), A271619, A279784, A327554, A327608.
The unordered version is A089259, non-strict A001970 (row-sums of A061260).
For compositions instead of partitions we have A304969, non-strict A055887.
A000041 counts integer partitions, strict A000009.
A072233 counts partitions by sum and length.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-PartitionsQ[k]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

From Vaclav Kotesovec, Mar 28 2016: (Start)
a(n) ~ c * n^2 * 2^(n/3), where
c = 436246966131366188.9451742926272200575837456478739... if mod(n,3) = 0
c = 436246966131366188.9351143199611598469443841182807... if mod(n,3) = 1
c = 436246966131366188.9322714926383227135786894927498... if mod(n,3) = 2
(End)

A055887 Number of ordered partitions of partitions.

Original entry on oeis.org

1, 1, 3, 8, 22, 59, 160, 431, 1164, 3140, 8474, 22864, 61697, 166476, 449210, 1212113, 3270684, 8825376, 23813776, 64257396, 173387612, 467856828, 1262431711, 3406456212, 9191739970, 24802339472, 66924874539, 180585336876, 487278670744, 1314838220172
Offset: 0

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Jordan matrices are upper bidiagonal matrices such that (A) the diagonal entries are in sorted order, (B) there are only 1's and 0's on the superdiagonal, (C) for each superdiagonal 1, the two diagonal entries to the left and below it must be equal. Let J(N) be the number of N X N Jordan matrices where the diagonal values are, without loss of generality, taken to be a prefix of some fixed strictly increasing sequence x_1, x_2, x_3, ... If Jordan blocks sorted by eigenvalue with ties broken by block size during the sorting, then J(1, 2, 3, ...) is this sequence. - Warren D. Smith, Jan 28 2002
Number of compositions of n into parts k >= 1 where there are A000041(k) sorts of part k. - Joerg Arndt, Sep 30 2012
Also number of chains of multisets that partition a normal multiset of weight n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Oct 28 2015
From Gus Wiseman, Jul 31 2022: (Start)
Also the number of ways to choose a multiset partition into constant multisets of a multiset of length n covering an initial interval of positive integers. This interpretation involves only multisets, not sequences. For example, the a(1) = 1 through a(3) = 8 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}}
{{1},{1}} {{1},{1,1}}
{{1},{2}} {{1},{2,2}}
{{2},{1,1}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{2}}
{{1},{2},{3}}
Factorizations into prime powers, are counted by A000688.
The strongly normal case is A063834.
The strongly normal strict case is A270995.
Twice-partitions of type PPR are counted by A279784, factorizations A295935.
The strict case is A304969.
(End)

Examples

			The a(4) = 22 chains of multisets, where notation x-y means "y is a submultiset of x", are: (o-o-o-o) (oo-o-o) (oo-oo) (ooo-o) (oooo) (oe-o-o) (ooe-o) (oooe) (oe-oe) (ooe-e) (oee-o) (ooee) (oei-o) (ooei) (oe-e-e) (oee-e) (oeee) (oei-e) (oeei) (oei-i) (oeii) (oeis).
From _Gus Wiseman_, Jul 31 2022: (Start)
a(n) is the number of ways to choose an integer partition of each part of an integer composition of n. The a(0) = 1 through a(3) = 8 choices are:
  ()  ((1))  ((2))     ((3))
             ((11))    ((21))
             ((1)(1))  ((111))
                       ((1)(2))
                       ((2)(1))
                       ((1)(11))
                       ((11)(1))
                       ((1)(1)(1))
(End)
		

Crossrefs

Row sums of A060642.
Cf. A326346.
The unordered version is A001970, row-sums of A061260.
A000041 counts integer partitions, strict A000009.
A011782 counts integer compositions.
A072233 counts partitions by sum and length.

Programs

  • Maple
    with(combstruct); SeqSetSetU := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
    P := (x) -> product( 1/(1-x^k), k=1..20 ) - 1; F := (x) -> series( 1/(1-P(x)) - 1, x, 21 ); # F(x) is g.f. for this sequence # Warren D. Smith, Jan 28 2002
    A055887rec:= proc(n::integer) local k; option remember; with(combinat): if n = 0 then 1 else add(numbpart(k) *procname(n - k), k=1..n); end if; end proc: seq (A055887rec(n), n=0..10); # Thomas Wieder, Nov 26 2007
  • Mathematica
    a = 1/Product[(1 - x^k), {k, 1, \[Infinity]}] - 1; CoefficientList[Series[1/(1 - a), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 23 2010 *)
    (1/(2 - 1/QPochhammer[x]) + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *)
    Table[Sum[Times@@PartitionsP/@c,{c,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}] (* Gus Wiseman, Jul 31 2022 *)
  • PARI
    Vec(1/(2-1/eta(x+O(x^66)))) \\ Joerg Arndt, Sep 30 2012

Formula

Invert transform of partitions numbers A000041.
Let p(k) be the number of integer partitions of k. Furthermore, set a(0)=1. Then a(n) = Sum_{k=1..n} p(k)*a(n-k). - Thomas Wieder, Nov 26 2007
G.f.: 1/( 1 - Sum_{k>=1} p(k)*x^k ) where p(k) = A000041(k) is the number of integer partitions of k. - Joerg Arndt, Sep 30 2012
a(n) ~ c * d^n, where d = 2.698329106474211231263998666188376330713465125913986356769... (see A246828) and c = 0.414113793172792357745578049739573823627306487211379286647... - Vaclav Kotesovec, Mar 29 2014

A133494 Diagonal of the array of iterated differences of A047848.

Original entry on oeis.org

1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0

Views

Author

Paul Barry, Paul Curtz, Dec 23 2007

Keywords

Comments

a(n) is the number of ways to choose a composition C, and then choose a composition of each part of C. - Geoffrey Critzer, Mar 19 2012
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the reptend length of 1/3^(n+1) in decimal. - Jianing Song, Nov 14 2018
Also the number of pairs of integer compositions, the first summing to n and the second with sum equal to the length of the first. If an integer composition is regarded as an arrow from sum to length, these are composable pairs, and the obvious composition operation founds a category of integer compositions. For example, we have (2,1,1,4) . (1,2,1) . (1,2) = (2,6), where dots represent the composition operation. The version without empty compositions is A000244. Composable triples are counted by 1 followed by A000302. The unordered version is A022811. - Gus Wiseman, Jul 14 2022

Examples

			From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
  ()  (1)  (2)      (3)
           (1,1)    (1,2)
           (1),(1)  (2,1)
                    (1,1,1)
                    (1),(2)
                    (2),(1)
                    (1),(1,1)
                    (1,1),(1)
                    (1),(1),(1)
(End)
		

Crossrefs

The strict version is A336139.
Splittings of partitions are A323583.
Multiset partitions of partitions are A001970.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict compositions of each part of a composition are A307068.
Compositions of each part of a strict composition are A336127.

Programs

Formula

Binomial transform of A078008. - Paul Curtz, Aug 04 2008
From R. J. Mathar, Nov 11 2008: (Start)
G.f.: (1 - 2*x)/(1 - 3*x).
a(n) = A000244(n-1), n > 0. (End)
From Philippe Deléham, Nov 13 2008: (Start)
a(n) = Sum_{k=0..n} A112467(n,k)*2^k.
a(n) = Sum_{k=0..n} A071919(n,k)*2^k. (End)
Let A(x) be the g.f. Then B(x) = x*A(x) satisfies B(x/(1-x)) = x/(1 - 2*B(x)). - Vladimir Kruchinin, Dec 05 2011
G.f.: 1/(1 - (Sum_{k>=1} (x/(1 - x))^k)). - Joerg Arndt, Sep 30 2012
For n > 0, a(n) = 2*(Sum_{k=0..n-1} a(k)) - 1 = 3^(n-1). - J. Conrad, Oct 29 2015
G.f.: 1 + x/(1 + x)*(1 + 4*x/(1 + 4*x)*(1 + 7*x/(1 + 7*x)*(1 + 10*x/(1 + 10*x)*(1 + .... - Peter Bala, May 27 2017
Invert transform of A011782(n) = 2^(n-1). Second invert transform of A000012. - Gus Wiseman, Jul 19 2020
a(n) = ceiling(3^(n-1)). - Alois P. Heinz, Jul 26 2020
From Elmo R. Oliveira, Mar 31 2025: (Start)
E.g.f.: (2 + exp(3*x))/3.
a(n) = 3*a(n-1) for n > 1. (End)

Extensions

Definition clarified by R. J. Mathar, Nov 11 2008

A050361 Number of factorizations into distinct prime powers greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The number of unordered factorizations of n into 1 and exponentially odd prime powers, i.e., p^e where p is a prime and e is odd (A246551). - Amiram Eldar, Jun 12 2025

Examples

			From _Gus Wiseman_, Jul 30 2022: (Start)
The A000688(216) = 9 factorizations of 216 into prime powers are:
  (2*2*2*3*3*3)
  (2*2*2*3*9)
  (2*2*2*27)
  (2*3*3*3*4)
  (2*3*4*9)
  (2*4*27)
  (3*3*3*8)
  (3*8*9)
  (8*27)
Of these, the a(216) = 4 strict cases are:
  (2*3*4*9)
  (2*4*27)
  (3*8*9)
  (8*27)
(End)
		

Crossrefs

Cf. A124010.
This is the strict case of A000688.
Positions of 1's are A004709, complement A046099.
The case of primes (instead of prime-powers) is A008966, non-strict A000012.
The non-strict additive version allowing 1's A023893, ranked by A302492.
The non-strict additive version is A023894, ranked by A355743.
The additive version (partitions) is A054685, ranked by A356065.
The additive version allowing 1's is A106244, ranked by A302496.
A001222 counts prime-power divisors.
A005117 lists all squarefree numbers.
A034699 gives maximal prime-power divisor.
A246655 lists all prime-powers (A000961 includes 1), towers A164336.
A296131 counts twice-factorizations of type PQR, non-strict A295935.

Programs

  • Haskell
    a050361 = product . map a000009 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    A050361 := proc(n)
        local a,f;
        if n = 1 then
            1;
        else
            a := 1 ;
            for f in ifactors(n)[2] do
                a := a*A000009(op(2,f)) ;
            end do:
        end if;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    Table[Times @@ PartitionsQ[Last /@ FactorInteger[n]], {n, 99}] (* Arkadiusz Wesolowski, Feb 27 2017 *)
  • PARI
    A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
    A050361(n) = factorback(apply(A000009,factor(n)[,2])); \\ Antti Karttunen, Nov 17 2019

Formula

Dirichlet g.f.: Product_{n is a prime power >1}(1 + 1/n^s).
Multiplicative with a(p^e) = A000009(e).
a(A002110(k))=1.
a(n) = A050362(A101296(n)). - R. J. Mathar, May 26 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.26020571070524171076..., where f(x) = (1-x) * Product_{k>=1} (1 + x^k). - Amiram Eldar, Oct 03 2023
Showing 1-10 of 235 results. Next