cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Augustine O. Munagi

Augustine O. Munagi's wiki page.

Augustine O. Munagi has authored 29 sequences. Here are the ten most recent ones:

A330774 Number of n-color perfect compositions of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 11, 1, 61, 7, 15, 1, 259, 1, 19, 17, 1901, 1, 383, 1, 511, 21, 27, 1, 14147, 11, 31, 187, 859, 1, 1403, 1, 147661, 29, 39, 25, 39307, 1, 43, 33, 42351, 1, 2303, 1, 1843, 947, 51, 1, 1815811, 15, 1255, 41, 2479, 1, 46697, 33, 97339, 45, 63, 1, 219347, 1
Offset: 0

Author

Augustine O. Munagi, Dec 30 2019

Keywords

Comments

An n-color perfect composition of v is a composition into j types of each part j whose sequence of parts contains one composition of every positive integer less than n.

Examples

			a(5)=11 because v=5 has eleven n-color perfect compositions: (1,1,1,1,1), (1,2,2),(2,2,1), (1,2',2'), (2',2',1), (1,1,3), (3,1,1), (1,1,3'), (3',1,1), (1,1,3''), (3'',1,1).
		

Crossrefs

A330773 Number of perfect compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 1, 11, 3, 5, 1, 27, 1, 5, 5, 49, 1, 27, 1, 27, 5, 5, 1, 163, 3, 5, 11, 27, 1, 49, 1, 261, 5, 5, 5, 231, 1, 5, 5, 163, 1, 49, 1, 27, 27, 5, 1, 1109, 3, 27, 5, 27, 1, 163, 5, 163, 5, 5, 1, 435, 1, 5, 27, 1631, 5, 49, 1, 27, 5, 49, 1, 2055, 1, 5, 27, 27, 5, 49, 1
Offset: 0

Author

Augustine O. Munagi, Dec 30 2019

Keywords

Comments

A perfect composition of n is one whose sequence of parts contains one composition of every positive integer less than n.

Examples

			a(7) = 11 because the perfect compositions are 1111111, 1222, 2221, 1114, 4111, 124, 142, 214, 241, 412, 421.
For example, 241 generates the compositions of 1,...,6: 1,2,21,4,41,24.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(x*(1+add(b(n/d),
           d=numtheory[divisors](n) minus {1, n})))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*i!, i=1..degree(p)))(b(n+1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 15 2020
  • Mathematica
    b[n_] := b[n] = x(1+Sum[b[n/d], {d, Divisors[n]~Complement~{1, n}}]);
    a[n_] := With[{p = b[n+1]}, Sum[Coefficient[p, x, i] i!, {i, Exponent[p, x]}]];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

Formula

a(1)=1, a(n) = Sum_{k=1..Omega(n+1)} k! * A251683(n+1,k), n>1.

A160086 a(n) = A104725(n) - A074206(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 7, 0, 3, 0, 3, 0, 0, 0, 25, 0, 0, 1, 3, 0, 6, 0, 36, 0, 0, 0, 36, 0, 0, 0, 25, 0, 6, 0, 3, 3, 0, 0, 152, 0, 3, 0, 3, 0, 25, 0, 25, 0, 0, 0, 69, 0, 0, 3, 171, 0, 6, 0, 3, 0, 6, 0, 279, 0, 0, 3, 3, 0, 6, 0, 152, 7, 0, 0, 69, 0, 0, 0, 25, 0, 69, 0, 3, 0, 0, 0
Offset: 0

Author

Augustine O. Munagi, May 01 2009

Keywords

Comments

a(n) is also the excess of the number of labeled factorizations of n over the number of ordered factorizations (see the Munagi link for definition of labeled factorization)

Examples

			a(8)=1 because A074206(8)=4 and A104725(8)=5, so a(8)=5-4. The only labeled factorization of 8 which is not an ordered factorization is (2_1.2_3)(2_2). a(9)=0 because A074206(9)=2=A104725(9). The labeled factorizations of 9, namely (9_1) and (3_1)(3_2), are also ordered factorizations.
		

Crossrefs

Programs

  • Maple
    a:=proc(n::integer) local u, r, i, j, k; if n<2 then return 0; end if; u:=map(x->x[2], ifactors(n)[2]); r:=add(u[i], i=1..nops(u)); add(add((-1)^i*binomial(k, i)*product(binomial(u[j]+k-i-1, u[j]), j=1..nops(u)), i=0..k-1)*(bell(k-1)-1), k=1..r); end proc: seq(a(n),n=0..99);

Formula

a(n) = Sum(ordfac(n,k)*(Bell(k-1)-1),k=1..Omega(n)), where ordfac(n,k)=number of ordered factorizations of n into k factors.

A160085 Number of ordered complementing systems of subsets of {0, 1, ..., n-1} (see A104725).

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 5, 1, 13, 3, 5, 1, 33, 1, 5, 5, 75, 1, 33, 1, 33, 5, 5, 1, 261, 3, 5, 13, 33, 1, 61, 1, 541, 5, 5, 5, 375, 1, 5, 5, 261, 1, 61, 1, 33, 33, 5, 1, 2405, 3, 33, 5, 33, 1, 261, 5, 261, 5, 5, 1, 717, 1, 5, 33, 4683, 5, 61, 1, 33, 5, 61, 1, 4549, 1, 5, 33, 33, 5, 61, 1, 2405
Offset: 0

Author

Augustine O. Munagi, May 01 2009

Keywords

Comments

Also number of permuted labeled factorizations of n (see the Munagi link for definition and examples)

Examples

			a(6) = 5: there are 3 complementing systems of subsets of {0,1,2,3,4,5} namely {{0,1,2,3,4,5}}, {{0,1,2},{0,3}} and {{0,1},{0,2,4}} (see A104725). Permuting the components gives 2 additional systems: {{0,3},{0,1,2}} and {{0,2,4},{0,1}}. Thus since {{0,1,2},{0,3}} is a complementing system of subsets of {0,1,2,3,4,5} we have 0 = 0 + 0, 1 = 1 + 0, 2 = 2 + 0, 3 = 0 + 3, 4 = 1 + 3, 5 = 2 + 3.
		

Crossrefs

Cf. A104725.

Programs

  • Maple
    a:=proc(n::integer) local u, r, i, j, k; if n<1 then return 0; elif n=1 then return 1; end if; u:=map(x->x[2], ifactors(n)[2]); r:=add(u[i], i=1..nops(u)); add(add(k!*add((-1)^i*binomial(t, i)*product(binomial(u[j]+t-i-1, u[j]), j=1..nops(u)), i=0..t-1)*stirling2(t-1,k-1), t=k..r),k=1..r); end proc: seq(a(n),n=0..99);

Formula

a(0) = 0, a(1) = 1, a(n) = Sum_{j=1..A001222(n)} (Sum_{k=1..j} k!Stirling2(j-1,k-1)), n > 1, where ordfac(n,k) = number of ordered factorizations of n into k factors.

A131456 Number of q-partial fraction summands of the reciprocal of n-th cyclotomic polynomial.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 7, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 10, 1, 2, 1, 2, 1, 2, 1, 2, 7
Offset: 1

Author

Augustine O. Munagi, Jul 12 2007

Keywords

Comments

Let Phi(n,q) be the n-th cyclotomic polynomial in q. The q-partial fraction decomposition of 1/Phi(n,q) is a representation of 1/Phi(n,q) as a finite sum of functions v(q)/(1-q^m)^t, such that m<=n and degree(v)A000010).

Examples

			(i) a(3)=1 because 1/Phi(3,q)=(1-q)/(1-q^3);
(ii) a(6)=2 because 1/Phi(6,q)=(-1-q)/(1-q^3) + (2+2q)/(1-q^6).
		

Crossrefs

Cf. A051664 (Number of terms in n-th cyclotomic polynomial).

A105491 Number of partitions of {1...n} containing 5 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly five 2-strings.

Original entry on oeis.org

15, 312, 4263, 49112, 521640, 5329044, 53580450, 537427440, 5422899339, 55344162874, 573270663966, 6040762924560, 64851119605636, 709986204480672, 7931189102016852, 90430835147203728, 1052534895931584828
Offset: 10

Author

Augustine O. Munagi, Apr 10 2005

Keywords

Comments

Number of partitions enumerated by A105482 in which the maximal length of consecutive integers in a block is 2.
With offset 5t, number of partitions of {1,...,N} containing 5 detached strings of t consecutive integers, where N=n+5j, t=2+j, j = 0,1,2,..., i.e., partitions of {1,...,N} in which only v-strings of consecutive integers can appear in a block, where v=1 or v=t and there are exactly five t-strings.

Examples

			a(10)=15; the enumerated 15 partitions of {1,...,10} with 5 detached pairs of consecutive integers include (1,2,5,6,9,10)(3,4,7,8) and (1,2,9,10)(3,4,7,8)(5,6).
		

References

  • A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463.

Crossrefs

Programs

  • Maple
    seq(binomial(n-5,5)*combinat[bell](n-6),n=10..30);

Formula

a(n)=binomial(n-5, 5)*Bell(n-6), which is the case r=5 in the general case of r pairs, d(n, r)=binomial(n-r, r)*Bell(n-r-1), which is the case t=2 of the general formula d(n, r, t)=binomial(n-r*(t-1), r)*B(n-r*(t-1)-1).

A105492 Number of partitions of {1,...,n} containing 2 strings of 3 consecutive integers such that only v-strings of consecutive integers can appear in a block, where v = 1,2,3.

Original entry on oeis.org

1, 6, 36, 210, 1260, 7833, 50701, 342126, 2406645, 17633820, 134427468, 1064801442, 8751834839, 74540800014
Offset: 6

Author

Augustine O. Munagi, Apr 11 2005

Keywords

Comments

Partitions enumerated by A105484 in which the maximal length of consecutive integers in a block is 3.

Examples

			a(7)=6; the enumerated partitions are 123567/4, 1237/456, 1567/234, 123/456/7, 123/4/567, 1/234/567.
		

References

  • A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463

Crossrefs

Formula

a(n)=Sum(w(n, k, 2), k=1...n), where w(n, k, 2) is the case r=2 of w(n, k, r) given by w(m, k, r)=w(m-1, k-1, r)+(k-1)w(m-1, k, r)+w(m-2, k-1, r)+(k-1)w(m-2, k, r) +w(m-3, k-1, r-1)+(k-1)w(m-3, k, r-1) r=0, 1, ..., floor(n/3), k=1, 2, ..., n-2r, w(n, k, 0)=sum(binomial(n-j, j)*S2(n-j-1, k-1), j=0..floor(n/2)).

A105493 Number of partitions of {1,...,n} containing 3 strings of 3 consecutive integers such that only v-strings of consecutive integers can appear in a block, where v = 1,2,3.

Original entry on oeis.org

2, 20, 170, 1340, 10375, 80652, 636990, 5143740, 42613980, 362863600, 3178544754, 28650249848
Offset: 9

Author

Augustine O. Munagi, Apr 11 2005

Keywords

Comments

Partitions enumerated by A105485 in which the maximal length of consecutive integers in a block is 3.

Examples

			a(9)=2, the enumerated partitions are 123/789/456, 123/456/789.
		

References

  • A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463

Crossrefs

Formula

a(n)=Sum(w(n, k, 3), k=1...n), where w(n, k, 3) is the case r=3 of w(n, k, r) given by w(m, k, r)=w(m-1, k-1, r)+(k-1)w(m-1, k, r)+w(m-2, k-1, r)+(k-1)w(m-2, k, r) +w(m-3, k-1, r-1)+(k-1)w(m-3, k, r-1) r=0, 1, ..., floor(n/3), k=1, 2, ..., n-2r, w(n, k, 0)=sum(binomial(n-j, j)*S2(n-j-1, k-1), j=0..floor(n/2)).

A105494 Number of partitions of {1,...,n} containing 4 strings of 3 consecutive integers such that only v-strings of consecutive integers can appear in a block, where v = 1,2,3.

Original entry on oeis.org

5, 75, 855, 8665, 83485, 788515, 7424515, 70378930, 675685240, 6594991405, 65598204272
Offset: 12

Author

Augustine O. Munagi, Apr 11 2005

Keywords

Comments

Partitions enumerated by A105486 in which the maximal length of consecutive integers in a block is 3.

Examples

			a(12)=5, the enumerated partitions are (1,2,3,7,8,9)(4,5,6,10,11,12),
(1,2,3,7,8,9)(4,5,6)(10,11,12), (1,2,3)(4,5,6,10,11,12)(7,8,9),
(1,2,3,10,11,12)(4,5,6)(7,8,9), (1,2,3)(4,5,6)(7,8,9) (10,11,12).
		

References

  • A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463

Crossrefs

Formula

a(n)=Sum(w(n, k, 4), k=1...n), where w(n, k, 4) is the case r=4 of w(n, k, r) given by w(m, k, r)=w(m-1, k-1, r)+(k-1)w(m-1, k, r)+w(m-2, k-1, r)+(k-1)w(m-2, k, r) +w(m-3, k-1, r-1)+(k-1)w(m-3, k, r-1) r=0, 1, ..., floor(n/3), k=1, 2, ..., n-2r, w(n, k, 0)=sum(binomial(n-j, j)*S2(n-j-1, k-1), j=0..floor(n/2)).

A105489 Number of partitions of {1...n} containing 3 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly three 2-strings.

Original entry on oeis.org

2, 20, 150, 1040, 7105, 49112, 347760, 2537640, 19135875, 149285400, 1205088742, 10062575068, 86859191510, 774456785200, 7126496659960, 67617733760064, 660932425168071, 6649326113764980, 68793130453044760, 731299516881396540
Offset: 6

Author

Augustine O. Munagi, Apr 10 2005

Keywords

Comments

Number of partitions enumerated by A105480 in which the maximal length of consecutive integers in a block is 2.
With offset 3t, number of partitions of {1...N} containing 3 detached strings of t consecutive integers, where N = n + 3j, t = 2 + j, j = 0, 1, 2, ..., i.e., partitions of {1,..,N} in which only v-strings of consecutive integers can appear in a block, where v=1 or v=t and there are exactly three t-strings.

Examples

			a(6) = 2 because the partitions of {1,2,3,4,5,6} with 3 detached pairs of consecutive integers are 12/34/56, 1256/34.
		

Crossrefs

Programs

  • Maple
    seq(binomial(n-3,3)*combinat[bell](n-4),n=6..25);
    a:=n->sum(numbcomb (n,2)*bell(n)/3, j=0..n): seq(a(n), n=2..21); # Zerinvary Lajos, Apr 25 2007

Formula

a(n) = binomial(n-3, 3)*Bell(n-4), which is the case r=3 in the general case of r pairs, d(n,r) = binomial(n-r, r)*Bell(n-r-1), which is the case t=2 of the general formula d(n,r,t) = binomial(n-r*(t-1), r)*Bell(n-r*(t-1)-1).