A119441 Distribution of A063834 in Abramowitz and Stegun order.
1, 2, 1, 3, 2, 1, 5, 3, 4, 2, 1, 7, 5, 6, 3, 4, 2, 1, 11, 7, 10, 9, 5, 6, 8, 3, 4, 2, 1, 15, 11, 14, 15, 7, 10, 9, 12, 5, 6, 8, 3, 4, 2, 1, 22, 15, 22, 21, 25, 11, 14, 15, 20, 18, 7, 10, 9, 12, 16, 5, 6, 8, 3, 4, 2, 1, 30, 22, 30, 33, 35, 15, 22, 21
Offset: 1
Examples
1; 2, 1; 3, 2, 1; 5, 3, 4, 2, 1; 7, 5, 6, 3, 4, 2, 1; T(5,2) = 5 because the second partition of 5 is 1+4 and 4 can be repartitioned in 5 different ways. T(5,3) = 6 because the third partition of 5 is 2+3, where the 2 can be partitioned in 2 ways (2, 1+1) and the 3 can be partitioned in 3 ways (3, 1+2, 1+1+1), 6=2*3. T(5,4) = 3 because the fourth partition of 5 is 1+1+3 and 3 can be partitioned in 3 different ways.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Maple
# Compare two partitions (list) in AS order. AScompare := proc(p1,p2) if nops(p1) > nops(p2) then return 1; elif nops(p1) < nops(p2) then return -1; else for i from 1 to nops(p1) do if op(i,p1) > op(i,p2) then return 1; elif op(i,p1) < op(i,p2) then return -1; end if; end do: return 0 ; end if; end proc: # Produce list of partitions in AS order ASPrts := proc(n) local pi,insrt,p,ex ; pi := [] ; for p in combinat[partition](n) do insrt := 0 ; for ex from 1 to nops(pi) do if AScompare(p, op(ex,pi)) > 0 then insrt := ex ; end if; end do: if nops(pi) = 0 then pi := [p] ; elif insrt = 0 then pi := [p,op(pi)] ; elif insrt = nops(pi) then pi := [op(pi),p] ; else pi := [op(1..insrt,pi),p,op(insrt+1..nops(pi),pi)] ; end if; end do: return pi ; end proc: A119441 := proc(n,k) local pi,a,p ; pi := ASPrts(n)[k] ; a := 1 ; for p in pi do a := a*combinat[numbpart](p) ; end do: a ; end proc: for n from 1 to 10 do for k from 1 to A000041(n) do printf("%d,",A119441(n,k)) ; end do: printf("\n") ; end do: # R. J. Mathar, Jul 12 2013
Formula
T(n,k) = product_{p=1..A036043(n,k)} A000041(c), 1<=k<=A000041(n), where c are the parts in the k-th partition of n. - R. J. Mathar, Jul 12 2013
Comments