cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Barry Cipra

Barry Cipra's wiki page.

Barry Cipra has authored 12 sequences. Here are the ten most recent ones:

A357442 Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections.

Original entry on oeis.org

1, 1, 3, 5, 17, 53, 260, 1466, 10915, 93196, 917898, 10015299, 119914982, 1557364352, 21797494987, 326930305166, 5230756117008, 88922108947567, 1600594738591550, 30411281088326498, 608225534389576956, 12772735698577492558
Offset: 1

Author

N. J. A. Sloane, Nov 06 2022, based on an email from Barry Cipra, Oct 26 2022

Keywords

Crossrefs

Programs

  • PARI
    { a357442(n) = ( sumdiv(n,d,(n\d)!*d^(n\d)*eulerphi(d)) + n*sum(k=0,n\2,n!\k!\2^k\(n-2*k)!) + if(n%2, n*((n-1)\2)!*2^((n-1)\2) + sumdiv(n,d, eulerphi(d)*sum(k=0,n\d\2,(n\d)! \ (2*k+1)! \ ((n\d-1)\2-k)! * (d/2)^((n\d-1)\2-k) ))) )\n\4; } \\ Max Alekseyev, Nov 10 2022

Formula

See PARI code for the formula. - Max Alekseyev, Nov 10 2022

Extensions

Terms a(7) onward from Max Alekseyev, Nov 10 2022

A333296 Largest number of non-congruent integer-sided bricks that can be assembled into an n X n X n cube.

Original entry on oeis.org

1, 1, 6, 10, 15, 21, 28, 35, 43, 52
Offset: 1

Author

N. J. A. Sloane, Mar 25 2020, following a suggestion from Barry Cipra

Keywords

Comments

The problem originated with Barry Cipra; the 10 values given here were found by Rob Pratt using integer programming.

A170941 a(n+1) = a(n) + n*a(n-1) - a(n-2) + a(n-3).

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 37, 112, 363, 1235, 4427, 16526, 64351, 259471, 1083935, 4668704, 20732609, 94607409, 443476993, 2130346450, 10482534517, 52740593933, 271186949333, 1423127827792, 7618169603035, 41554791114643, 230857090312059, 1305086617517534
Offset: 0

Author

Barry Cipra, Feb 09 2010

Keywords

Comments

The number of different RNA structures for sequences of length n.
a(n) = number of involutions on [n] that contain no adjacent transpositions. For example, a(3) = 2 counts (in cycle form) the identity and (1,3), but not (1,2) or (2,3) because they are adjacent transpositions. - David Callan, Nov 11 2012
Conjecture: a(n)/A000085(n) -> 1/e as n -> inf. In other words, the asymptotic proportion of involutions that contain no adjacent transpositions is conjecturally = 1/e. - David Callan, Nov 11 2012
Number of matchings (i.e. Hosoya index) in the complement of P_n where P_n is the n-path graph. - Andrew Howroyd, Mar 15 2016

References

  • M. Nebel, Combinatorial Properties of RNA secondary Structures, 2001.
  • M. Regnier, Generating Functions in Computational Biology, INRIA, March 3, 1997.

Crossrefs

Column k=0 of A217876.
Column k=1 of A239144.

Programs

  • Maple
    A170941 := proc(n) option remember; if n < 4 then [1$3,2][n+1] ; else procname(n-1)+(n-1)*procname(n-2)-procname(n-3)+procname(n-4) ; end if; end proc: seq(A170941(n), n=0..40) ; # R. J. Mathar, Feb 20 2010
  • Mathematica
    a[0] = a[1] = a[2] = 1; a[3] = 2; a[n_] := a[n] = a[n-1] + (n-1) a[n-2] - a[n-3] + a[n-4];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 30 2017 *)
    RecurrenceTable[{a[n + 1] == a[n] + n a[n - 1] - a[n - 2] + a[n - 3], a[0] == a[1] == a[2] == 1, a[3] == 2}, a, {n, 20}] (* Eric W. Weisstein, Apr 12 2018 *)
    nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,d+(n+1)c-b+a}; NestList[nxt,{2,1,1,1,2},30][[All,2]] (* Harvey P. Dale, Feb 16 2020 *)
  • PARI
    a=vector(50); a[1]=a[2]=1;a[3]=2; a[4]=5; for(n=5, #a, a[n]=a[n-1]+(n-1)*a[n-2]-a[n-3]+a[n-4]); concat(1, a) \\ Altug Alkan, Apr 12 2018

Formula

a(n) ~ exp(sqrt(n) - n/2 - 5/4) * n^(n/2) / sqrt(2) * (1 + 31/(24*sqrt(n))). - Vaclav Kotesovec, Sep 10 2014

Extensions

More terms from R. J. Mathar, Feb 20 2010
a(0)=1 inserted and program adapted by Alois P. Heinz, Mar 10 2014

A137200 Number of ways to tile an n X 1 strip with 1 X 1 squares and 2 X 1 dominoes with the restriction that no three consecutive tiles are of the same type.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 9, 13, 18, 25, 34, 47, 65, 90, 124, 171, 236, 326, 450, 621, 857, 1183, 1633, 2254, 3111, 4294, 5927, 8181, 11292, 15586, 21513, 29694, 40986, 56572, 78085, 107779, 148765, 205337, 283422, 391201, 539966, 745303, 1028725, 1419926, 1959892
Offset: 0

Author

Barry Cipra, Mar 03 2008

Keywords

Comments

Without the restriction one gets the Fibonacci numbers, A000045.
Might be called the no-tri-bonacci numbers.

Examples

			For example (using 1's to denote squares and 2's to denote dominoes), a(6)=7 because you have the tilings 11211, 1122, 1212, 1221, 2112, 2121 and 2211 and no others.
		

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1,0,0,1},{1,2,2,4},50]] (* Harvey P. Dale, Jul 26 2011 *)

Formula

a(n) = a(n-1) + a(n-4) for n>4; g.f.: (1+x^2+x^4)/(1-x-x^4). Also a(n) = a(n-2) + a(n-4) + a(n-5).

A133800 Triangle read by rows in which row n gives number of ways to partition n labeled elements into k pie slices allowing the pie to be turned over (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 3, 1, 15, 25, 30, 12, 1, 31, 90, 195, 180, 60, 1, 63, 301, 1050, 1680, 1260, 360, 1, 127, 966, 5103, 12600, 15960, 10080, 2520, 1, 255, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 1, 511, 9330, 102315, 510300, 1369620
Offset: 1

Author

Barry Cipra and N. J. A. Sloane, Jan 17 2008

Keywords

Examples

			Triangle begins:
1,
1,  1,
1,  3,   1,
1,  7,   6,    3,
1, 15,  25,   30,   12,
1, 31,  90,  195,  180,   60,
1, 63, 301, 1050, 1680, 1260, 360.
...
For row n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4 .. (1234)
k=4 .. k=3 ..k=2 . k=2 . k=1
(3)....(6)...(3)..(4)... (1)
		

Crossrefs

Row sums give A032262. Diagonals give A000225, A000392, A032263, A133799, A001710.

Programs

Formula

Take triangle of Stirling numbers of second kind (A008277) and multiply k-th column by A001710(k) (order of alternating group A_k).

Extensions

More terms from R. J. Mathar, Jan 18 2008

A129860 Number of unrooted bifurcating tree shapes with n leaves.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, 552, 1132, 2410, 5098, 11020, 23846, 52233, 114796, 254371, 565734, 1265579, 2841632, 6408674, 14502229, 32935002, 75021750, 171404424, 392658842, 901842517, 2076217086, 4790669518, 11077270335
Offset: 2

Author

Barry Cipra, May 23 2007

Keywords

Comments

Alternatively, the number of unrooted, unlabeled binary tree topologies with n leaves. - Steven Kelk, Jul 22 2016
This sequence is identical to A000672 (3-valent trees, boron trees, or binary trees) except the offset is different. A000672 is the main entry for this sequence and has much more information (including a b-file with many more terms). Thanks to Steven Kelk for noticing the errors in the present sequence (which have now been corrected), and for discovering the connection with A000672. - N. J. A. Sloane, Jul 22 2016

References

  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, page 33. Note that at least the first two editions give an incorrect version of this sequence.

Crossrefs

Essentially the same sequence as A000672.

Extensions

Entry revised by N. J. A. Sloane, Jul 22 2016 at the suggestion of Steven Kelk

A094866 Number of truncated ST-pairs O(q^n).

Original entry on oeis.org

1, 2, 4, 6, 11, 15, 26, 41, 67, 96, 138, 197, 300, 431, 636, 893, 1258, 1723, 2447, 3425, 4962, 6839, 10000, 13989, 21383, 30781, 48292, 70456, 110214, 159686, 253265, 374385, 591648, 876405, 1354888
Offset: 3

Author

Barry Cipra, Jun 15 2004

Keywords

Comments

A truncated ST-pair O(q^n) consists of a subset S of {1, 2, ..., n-1} and a subset T of {1, 2, ..., n-2} such that (Product_{k in S} 1/(1-q^k)) - q (Product_{k in T} 1/(1-q^k)) = 1 + O(q^n). - Andrey Zabolotskiy, Feb 27 2024

References

  • F. G. Garvan, Shifted and Shiftless Partition Identities, in Number Theory for the Millennium II (M. A. Bennett et al., eds.), AK Peters, Ltd. 2002, pp. 75-92.

Programs

  • Mathematica
    st[n_] := Select[Flatten[Table[{s, t}, {s, Subsets@Range[n - 1]}, {t, Subsets@Range[n - 2]}], 1], Normal[Product[1/(1-q^k) + O[q]^n, {k, First@#}] - q Product[1/(1-q^k) + O[q]^n, {k, Last@#}] - 1] == 0 &];
    Table[Length@st[n], {n, 3, 9}] (* Andrey Zabolotskiy, Feb 27 2024 *)

A094708 Size of the smallest set hitting all {x, 2x, 3x} contained in D(n) = the first n 3-smooth numbers {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27,...} (A003586).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 21
Offset: 1

Author

Barry Cipra, Jun 15 2004

Keywords

Comments

A057561(n) = n - a(n). [Steven Finch, Feb 25 2009]

Crossrefs

Extensions

More terms from Sean A. Irvine, Nov 19 2015

A079486 Number of different solutions to a variant of the 3-ball tennis ball problem.

Original entry on oeis.org

3, 15, 103, 879, 8787, 99061, 1227369, 16409937, 233588249, 3504149013, 54963273921, 895797910129, 15094359120933, 261882874511985, 4662472442136561, 84940003965749601, 1579633610378515989, 29927014639635474589, 576597813697577550447, 11280469732919709557493
Offset: 1

Author

Barry Cipra, Jan 19 2003

Keywords

Comments

You're given labeled balls three at time (labeled 1,2,3 then 4,5,6 etc.), choose two balls from those still on hand (including the three you've just been given) and throw the larger out the window onto the front lawn, the smaller onto the back lawn.
a(n) is the number of 2 X n matrices of positive integers, with the numbers in each row and column increasing, the numbers in column k less than or equal to 3k and no number used more than once.

Crossrefs

Programs

  • PARI
    \\ See links.

Extensions

Larger terms through to a(12) computed by Matt Richey.
a(13) onwards from Sean A. Irvine, Aug 17 2025

A055518 a_{k+1} = 6*a_k + 11*a_{k-1} - 19*a_{k-2} - 4*a_{k-3} + a_{k-4}, a_1=1, a_2=2, a_3=19, a_4=118, a_5=875.

Original entry on oeis.org

1, 2, 19, 118, 875, 6180, 44389, 317236, 2270893, 16247718, 116267271, 831957002, 5953209015, 42598982984, 304823192665, 2181205436792, 15607926184313, 111684733527034, 799175992102923, 5718617425358462, 40920380028968819
Offset: 1

Author

Barry Cipra, Jul 04 2000

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,11,-19,-4,1},{1,2,19,118,875},30] (* Harvey P. Dale, Nov 25 2018 *)

Formula

a(n) = Sum_{k=1..n} Fibonacci(k)^4*a(n-k), a(0)=1. - Vladeta Jovovic, Apr 23 2003