A357442 Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections.
1, 1, 3, 5, 17, 53, 260, 1466, 10915, 93196, 917898, 10015299, 119914982, 1557364352, 21797494987, 326930305166, 5230756117008, 88922108947567, 1600594738591550, 30411281088326498, 608225534389576956, 12772735698577492558
Offset: 1
Keywords
Links
- Barry Cipra, Illustration for a(5) = 17
- N. J. A. Sloane, Sketch illustrating a(1) = a(2) = 1, a(3) = 3
- Philip Todd, Theorem Discovery Amongst Cyclic Polygons, arXiv:2401.13002 [cs.CG], 2024.
Programs
-
PARI
{ a357442(n) = ( sumdiv(n,d,(n\d)!*d^(n\d)*eulerphi(d)) + n*sum(k=0,n\2,n!\k!\2^k\(n-2*k)!) + if(n%2, n*((n-1)\2)!*2^((n-1)\2) + sumdiv(n,d, eulerphi(d)*sum(k=0,n\d\2,(n\d)! \ (2*k+1)! \ ((n\d-1)\2-k)! * (d/2)^((n\d-1)\2-k) ))) )\n\4; } \\ Max Alekseyev, Nov 10 2022
Formula
See PARI code for the formula. - Max Alekseyev, Nov 10 2022
Extensions
Terms a(7) onward from Max Alekseyev, Nov 10 2022
Comments