cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A274942 Erroneous version of A129860.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 12, 18, 41, 66, 154, 265, 628, 1132, 2748, 5098, 12444
Offset: 3

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but incorrect sequences to serve as pointers to the correct versions.

References

  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, p. 33.

A000672 Number of 3-valent trees (= boron trees or binary trees) with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, 552, 1132, 2410, 5098, 11020, 23846, 52233, 114796, 254371, 565734, 1265579, 2841632, 6408674, 14502229, 32935002, 75021750, 171404424, 392658842, 901842517, 2076217086, 4790669518, 11077270335
Offset: 0

Views

Author

Keywords

Comments

This can be described in 2 ways: (a) Trees with n nodes of valency <= 3, for n = 0,1,2,3,... (b) Trees with t = 2n+2 nodes of valency either 1 or 3 (implying that there are n nodes of valency 3 - the boron atoms - and n+2 nodes of valency 1 - the hydrogen atoms), for t = 2,4,6,8,...
Essentially the same sequences arises from studying the number of unrooted, unlabeled binary tree topologies with n leaves (see A129860). - Steven Kelk, Jul 22 2016

Examples

			The 4 trees with 6 nodes are:
._._._._._. . ._._._._. . ._._._._. . ._._._.
. . . . . . . . | . . . . . . | . . . . | |
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 11*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • P. J. Cameron, Oligomorphic Permutation Groups, Cambridge; see Fig. 2 p. 35.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, page 33. Note that at least the first two editions give an incorrect version of this sequence.
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k = 3 of A144528.
Cf. A001190(n+1) (rooted trees).

Programs

  • Mathematica
    (* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k, 1, (n-1)/2}]; c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k], {k, 1, n/2-1}]; c[0] = 0; c[1] = 1; b[x_] := If[IntegerQ[x], c[x+1], 0]; a[0] = a[1] = a[2] = 1; a[n_] := b[n/2] - (1/3)*(b[(n-1)/3]-1)*b[(n-1)/3]*(b[(n-1)/3] + 1) + 2*b[n] - b[n+1] - Sum[(1/2)*(b[i]-1)*b[i]*b[-2*i + n - 1], {i, 1, (n-2)/2}] + Sum[b[i]*Sum[b[j]*b[n-i-j-1], {j, i, (1/2)*(n-i-1)}], {i, 1, (n-1)/3}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 19 2015 *)
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    n = 60; c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k,1,(n-1)/2}];
    c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k],
      {k,1,n/2-1}]; c[0] = 0; c[1] = 1; (* as in program 1 above *)
    gf[x_] := Sum[c[i+1] x^i, {i,0,n}]; (* g.f. for A001190(n+1) *)
    ci[x_] := SymmetricGroupIndex[3, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 +
    x ci[x], {x,0,n}]], x] (* Robert A. Russell, Jan 17 2023 *)

Formula

Rains and Sloane give a g.f.
a(0)=a(1)=a(2)=1, a(n) = 2*b(n+1) - b(n+2) + b((n+1)/2) - 2*C(1+b(n/3), 3) - Sum_{i=1..[(n-1)/2]} C(b(i), 2)*b(n-2*i) + Sum_{i=1..[n/3]} b(i) Sum_{j=i..[(n-i)/2]} b(j)*b(n-i-j), where b(x) = A001190(x+1) if x is an integer, otherwise 0 (Cyvin et al.) [Index of A001190 shifted by R. J. Mathar, Mar 08 2010]
a(n) = A000673(n) + A000675(n).
a(n) ~ c * d^n / n^(5/2), where d = A086317 = 2.4832535361726368585622885181... and c = 1.2551088797592580080398489829149157375... . - Vaclav Kotesovec, Apr 19 2016
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S3,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^3 + 3*B(x) B(x^2) + 2*B(x^3)) / 6, where B(x) = 1 + x * cycle_index(S2,B(x)) = 1 + x * (B(x)^2 + B(x^2)) / 2 is the generating function for A001190(n+1). - Robert A. Russell, Jan 17 2023

A339650 Triangle read by rows: T(n,k) is the number of trees with n leaves of exactly k colors and all non-leaf nodes having degree 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 6, 3, 0, 1, 10, 30, 36, 15, 0, 2, 27, 140, 310, 300, 105, 0, 2, 74, 663, 2376, 3990, 3150, 945, 0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395, 0, 6, 710, 15642, 123508, 462735, 925890, 1018710, 582120, 135135
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2020

Keywords

Comments

See table 4.2 in the Johnson reference.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   2,    1;
  0, 1,   4,    6,     3;
  0, 1,  10,   30,    36,    15;
  0, 2,  27,  140,   310,   300,   105;
  0, 2,  74,  663,  2376,  3990,  3150,   945;
  0, 4, 226, 3186, 17304, 44850, 59805, 39690, 10395;
  ...
		

Crossrefs

Columns k=1..4 are A129860, A220829, A220830, A220831.
Main diagonal is A001147(n-2) for n >= 2.
Row sums are A339651.
Cf. A319541 (rooted), A339649, A339780.

Programs

  • PARI
    \\ here U(n,k) is column k of A339649 as a vector.
    R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    U(n, k)={my(g=x*Ser(R(n, k))); Vec(1 + g + (subst(g + O(x*x^(n\3)), x, x^3) - g^3)/3)}
    M(n, m=n)={my(v=vector(m+1, k, U(n, k-1)~)); Mat(vector(m+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A339649(n,i).

A339649 Array read by antidiagonals: T(n,k) is the number of leaf colored trees with n leaves of k colors and all non-leaf nodes having degree 3.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 6, 1, 0, 1, 6, 15, 20, 21, 12, 2, 0, 1, 7, 21, 35, 55, 63, 31, 2, 0, 1, 8, 28, 56, 120, 220, 227, 78, 4, 0, 1, 9, 36, 84, 231, 600, 1040, 891, 234, 6, 0, 1, 10, 45, 120, 406, 1386, 3530, 5480, 3876, 722, 11, 0
Offset: 0

Views

Author

Andrew Howroyd, Dec 14 2020

Keywords

Comments

Not all k colors need to be used. The total number of nodes will be 2n-1.
See table 4.1 in the Johnson reference.

Examples

			Array begins:
======================================================
n\k| 0 1   2     3      4       5       6        7
---+--------------------------------------------------
0  | 1 1   1     1      1       1       1        1 ...
1  | 0 1   2     3      4       5       6        7 ...
2  | 0 1   3     6     10      15      21       28 ...
3  | 0 1   4    10     20      35      56       84 ...
4  | 0 1   6    21     55     120     231      406 ...
5  | 0 1  12    63    220     600    1386     2842 ...
6  | 0 2  31   227   1040    3530    9772    23366 ...
7  | 0 2  78   891   5480   23250   77112   214718 ...
8  | 0 4 234  3876  31420  165510  655599  2122099 ...
9  | 0 6 722 17790 190360 1243825 5878446 22102577 ...
     ...
		

Crossrefs

Columns k=1..4 are A129860, A220826, A220827, A220828.
Cf. A319539 (rooted), A339650, A339779.

Programs

  • PARI
    \\ here U(n,k) gives column k as a vector.
    R(n, k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    U(n, k)={my(g=x*Ser(R(n,k))); Vec(1 + g + (subst(g + O(x*x^(n\3)), x, x^3) - g^3)/3)}
    {my(T=Mat(vector(8, k, U(8, k-1)~))); for(n=1, #T~, print(T[n,]))}

Formula

G.f. of column k: 1 + R(x) + (R(x^3) - R(x)^3)/3 where R(x) is the g.f. of column k of A319539.

A220829 Number of unrooted binary leaf-multi-labeled trees with n leaves on the label set [2], with each label used at least once.

Original entry on oeis.org

0, 1, 2, 4, 10, 27, 74, 226, 710, 2354, 8010, 28189, 101094, 370119, 1375198, 5181003, 19740940, 75990173, 295100800, 1155106357, 4553312866, 18063117153, 72069297826, 289053128879, 1164870009786, 4714970819402, 19161572076550, 78162885020942, 319940035684684, 1313799822309748
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Crossrefs

Column 2 of A339650.

Programs

Formula

a(n) = A220826(n) - 2*A129860(n). - Andrew Howroyd, Dec 14 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 14 2020

A220830 Number of unrooted binary leaf-multi-labeled trees with n leaves on the label set [3], with each label used at least once.

Original entry on oeis.org

0, 0, 1, 6, 30, 140, 663, 3186, 15642, 78441, 400842, 2084698, 11009358, 58955139, 319619706, 1752122667, 9700923252, 54194387085, 305216395077, 1731579241287, 9889280682948, 56822058078669, 328300135291659, 1906449141877331, 11122447670117451, 65168427936552522
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Crossrefs

Column 3 of A339650.

Formula

a(n) = A220827(n) - 3*A220826(n) + 3*A129860(n). - Andrew Howroyd, Dec 14 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 14 2020
Showing 1-6 of 6 results.