cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A144528 Triangle read by rows: T(n,k) is the number of trees on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 3, 0, 0, 1, 4, 5, 6, 0, 0, 1, 6, 9, 10, 11, 0, 0, 1, 11, 18, 21, 22, 23, 0, 0, 1, 18, 35, 42, 45, 46, 47, 0, 0, 1, 37, 75, 94, 101, 104, 105, 106, 0, 0, 1, 66, 159, 204, 223, 230, 233, 234, 235, 0, 0, 1, 135, 355, 473, 520, 539, 546, 549, 550, 551
Offset: 1

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 0 1
  0 0 1  2
  0 0 1  2  3
  0 0 1  4  5  6
  0 0 1  6  9 10  11
  0 0 1 11 18 21  22  23
  0 0 1 18 35 42  45  46  47
  0 0 1 37 75 94 101 104 105 106
  ...
From _Andrew Howroyd_, Dec 17 2020: (Start)
Formatted as an array to show the full columns:
================================================
n\k  | 0 1 2   3   4   5   6   7   8   9  10
-----+------------------------------------------
   1 | 1 1 1   1   1   1   1   1   1   1   1 ...
   2 | 0 1 1   1   1   1   1   1   1   1   1 ...
   3 | 0 0 1   1   1   1   1   1   1   1   1 ...
   4 | 0 0 1   2   2   2   2   2   2   2   2 ...
   5 | 0 0 1   2   3   3   3   3   3   3   3 ...
   6 | 0 0 1   4   5   6   6   6   6   6   6 ...
   7 | 0 0 1   6   9  10  11  11  11  11  11 ...
   8 | 0 0 1  11  18  21  22  23  23  23  23 ...
   9 | 0 0 1  18  35  42  45  46  47  47  47 ...
  10 | 0 0 1  37  75  94 101 104 105 106 106 ...
  11 | 0 0 1  66 159 204 223 230 233 234 235 ...
  12 | 0 0 1 135 355 473 520 539 546 549 550 ...
  ...
(End)
		

Crossrefs

Columns k=2..7 are A000012, A000672, A000602, A036650, A036653, A359392.
The last three diagonals give A144527, A144520, A000055.

Programs

  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[i<1, 0, Sum[Binomial[b[i-1, i-1,
      k, k] + j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; a = {}; nmax = 20;
    For[ni=2, ni < nmax-1, ni++, (* columns 3 to max-1 *)
      gf[x_] = 1 + Sum[b[j-1, j-1, ni, ni] x^j, {j, 1, nmax}];
      ci[x_] = SymmetricGroupIndex[ni+1, x] /. x[i_] -> gf[x^i];
      a = Append[a, CoefficientList[Normal[Series[
        gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x], {x, 0, nmax}]], x]];]
    Join[{1, 0, 1, 0, 0, 1}, Table[Join[{0, 0, 1}, Table[a[[k-3]][[n+1]],
    {k, 4, n}]], {n, 4, nmax}]] // Flatten (* Robert A. Russell, Feb 05 2023 *)
  • PARI
    \\ here V(n,k) gives column k as a vector.
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={Mat(vector(m, k, V(n,k-1)[2..1+n]~))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020

Extensions

a(53) corrected and terms a(56) and beyond from Andrew Howroyd, Dec 17 2020

A086317 Decimal expansion of asymptotic constant xi for counts of weakly binary trees.

Original entry on oeis.org

2, 4, 8, 3, 2, 5, 3, 5, 3, 6, 1, 7, 2, 6, 3, 6, 8, 5, 8, 5, 6, 2, 2, 8, 8, 5, 1, 8, 1, 7, 8, 2, 2, 1, 2, 8, 9, 1, 8, 8, 6, 9, 7, 3, 4, 0, 8, 1, 4, 3, 6, 4, 5, 8, 5, 9, 2, 0, 2, 5, 9, 6, 9, 7, 3, 0, 6, 7, 4, 2, 5, 4, 0, 8, 8, 5, 8, 0, 9, 8, 3, 9, 0, 6, 4, 7, 6, 4, 0, 1, 6, 9, 1, 6, 7, 2, 1, 8, 2, 7, 4, 7
Offset: 1

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Examples

			2.48325353617263685856228851817822128918869734...
		

Crossrefs

Programs

  • Mathematica
    digits = 102; c[0] = 2; c[n_] := c[n] = c[n - 1]^2 + 2; xi[n_Integer] := xi[n] = c[n]^(2^-n); xi[5]; xi[n = 10]; While[RealDigits[xi[n], 10, digits] != RealDigits[xi[n - 5], 10, digits], n = n + 5]; RealDigits[xi[n], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)

Formula

Equals 1/A240943.
Equals lim_{n->infinity} A001190(n)^(1/n). - Vaclav Kotesovec, Jul 28 2014

Extensions

Typos corrected by Jean-François Alcover, May 27 2014

A129860 Number of unrooted bifurcating tree shapes with n leaves.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, 552, 1132, 2410, 5098, 11020, 23846, 52233, 114796, 254371, 565734, 1265579, 2841632, 6408674, 14502229, 32935002, 75021750, 171404424, 392658842, 901842517, 2076217086, 4790669518, 11077270335
Offset: 2

Views

Author

Barry Cipra, May 23 2007

Keywords

Comments

Alternatively, the number of unrooted, unlabeled binary tree topologies with n leaves. - Steven Kelk, Jul 22 2016
This sequence is identical to A000672 (3-valent trees, boron trees, or binary trees) except the offset is different. A000672 is the main entry for this sequence and has much more information (including a b-file with many more terms). Thanks to Steven Kelk for noticing the errors in the present sequence (which have now been corrected), and for discovering the connection with A000672. - N. J. A. Sloane, Jul 22 2016

References

  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, page 33. Note that at least the first two editions give an incorrect version of this sequence.

Crossrefs

Essentially the same sequence as A000672.

Extensions

Entry revised by N. J. A. Sloane, Jul 22 2016 at the suggestion of Steven Kelk

A000673 Number of bicentered 3-valent (or boron, or binary) trees with n nodes.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 2, 6, 8, 18, 30, 67, 127, 275, 551, 1192, 2507, 5475, 11820, 26007, 57077, 126686, 281625, 630660, 1416116, 3195784, 7232624, 16430563, 37429146, 85528079, 195940960, 450074270, 1036226173, 2391193488, 5529420585
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)

A000675 Number of centered 3-valent (or boron, or binary) trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 4, 5, 10, 19, 36, 68, 138, 277, 581, 1218, 2591, 5545, 12026, 26226, 57719, 127685, 284109, 634919, 1425516, 3212890, 7269605, 16504439, 37592604, 85876345, 196717882, 451768247, 1039990913, 2399476030, 5547849750
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] (* Robert A. Russell, Sep 15 2018 *)

A380633 Triangle read by rows: T(n,k) is the number of simple connected graphs on n unlabeled nodes of degree at most 3 with k cycles and each node a member of exactly one cycle, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 3, 0, 1, 3, 6, 0, 1, 4, 11, 2, 0, 1, 4, 17, 5, 0, 1, 5, 26, 17, 0, 1, 5, 36, 37, 2, 0, 1, 6, 50, 78, 12, 0, 1, 6, 65, 140, 44, 0, 1, 7, 85, 248, 131, 4, 0, 1, 7, 106, 396, 325, 23
Offset: 0

Views

Author

Andrew Howroyd, Feb 24 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Examples

			Triangle begins:
  1;
  0;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  1;
  0, 1, 3,  3;
  0, 1, 3,  6;
  0, 1, 4, 11,  2;
  0, 1, 4, 17,  5;
  0, 1, 5, 26, 17;
  0, 1, 5, 36, 37, 2;
  ...
		

Crossrefs

Columns 0..3 are A000007, A000012(n+3), A004526(n+4), A003453(n+4).
Row sums are A380805.
Cf. A000672, A380631 (with vertices of any degree).

Programs

  • PARI
    raise(p,d) = {my(n=serprec(p,x)-1); substvec(p + O(x^(n\d+1)), [x, y], [x^d,y^d])}
    R(n,y)={my(g=O(x^3)); for(n=1, (n-1)\2, my(p=x*(1 + g), p2=raise(p,2)); g=x*y*(p^2/(1 - p) + (1 + p)*p2/(1 - p2))/2); g}
    G(n,y=1)={my(g=R(n,y), p = x*(1+g) + O(x*x^n));
      my( r=((1 + p)^2/(1 - raise(p,2)) - 1)/2 );
      my( c=-sum(d=1, n, eulerphi(d)/d*log(raise(1-p,d))) );
      1 + (raise(g,2) - g^2 + y*(r + c - 2*p - p^2 - raise(p,2)))/2 }
    T(n)={[Vecrev(p) | p<-Vec(G(n,y))]}
    {my(A=T(15)); for(i=1, #A, print(A[i]))}

Formula

T(3*n,n) = A000672(n).

A363251 Number of nonisomorphic open quipus with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 36, 64, 127, 241, 480, 935, 1868, 3688, 7373, 14655, 29305, 58432, 116859, 233367, 466727, 932761, 1865513, 3729648, 7459286, 14915826, 29831640, 59657802, 119315589, 238620236, 477240456, 954459044, 1908918069, 3817792423
Offset: 0

Views

Author

Didrik Fosse, May 31 2023

Keywords

Comments

An open quipu is a tree of maximal valency 3 such that all nodes of degree 3 lie on a path.

Examples

			The 4 open quipus with 6 nodes are:
  ._._._._._.   ._._._._.   ._._._._.   ._._._.
                  |             |         | |
The smallest interesting nonexample, a 3-valent tree where the nodes of degree 3 do not lie on a path, is:
     .   .
     |   |
   ._._._._.
       |
     ._._.
		

Crossrefs

A000672 minus the trees where the nodes of degree 3 do not lie on a path.
Cf. A130131 (any maximum degree).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-5,-3,-1,3,7,0,-1,-6,-2,4},{1,1,1,1,2,2,4,6,11,18,36,64,127},50] (* Paolo Xausa, Aug 13 2023 *)

Formula

G.f.: (1 - x - 4*x^2 + x^3 + 5*x^4 + 4*x^5 - 4*x^7 - 6*x^8 - 3*x^9 + 5*x^10 + 4*x^11 - x^12)/((1 - x)^3*(1 + x)^2*(1 - 2*x)*(1 + x^2)*(1 + x + x^2)*(1 - 2*x^2)). - Andrew Howroyd, May 31 2023

A052120 Number of 3-valent trees (= boron trees or binary trees) with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 4, 0, 6, 0, 11, 0, 18, 0, 37, 0, 66, 0, 135, 0, 265, 0, 552, 0, 1132, 0, 2410, 0, 5098, 0, 11020, 0, 23846, 0
Offset: 1

Views

Author

Keywords

Comments

Trees with n nodes each of valency either 1 or 3.

Crossrefs

See A000672, the subsequence of even-numbered terms, which is the main entry for this sequence, for more terms, references, etc.

A335408 Diameter of nearest neighbor interchange distance for free 3-trees.

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 12, 15, 18, 21
Offset: 3

Views

Author

Martin R. Smith, Jun 06 2020

Keywords

Comments

a(n) is the maximum value of the nearest neighbor interchange distance between two unrooted binary trees with n leaves, obtained by evaluating the distance from one tree with each of the unlabeled n-leaf tree shapes (see A000672) to each labeled n-leaf tree (A001147) using the C script described in Li et al. (1996).
The known terms a(3),...,a(12) happen (coincidentally?) to match the first ten terms of A211266. However, it seems unlikely that the sequences will agree for ever.

References

  • Ming Li, John Tromp, and Louxin Zhang, Some notes on the nearest neighbour interchange distance, in Goos, G., Hartmanis, J., Leeuwen, J., Cai, J.-Y., and Wong, C. K., eds., "Computing and Combinatorics" 1090, Springer (Berlin, Heidelberg) (1996), 343-351. doi:10.1007/3-540-61332-3_168.

Crossrefs

Cf. A211266, which happens to have the same initial terms (offset by two). It is not clear whether this correspondence continues for higher terms.
A000672 gives the number of unrooted tree shapes on n leaves; A001147 gives the number of (labeled) unrooted trees.
Showing 1-9 of 9 results.