cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000602 Number of n-node unrooted quartic trees; number of n-carbon alkanes C(n)H(2n+2) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355, 802, 1858, 4347, 10359, 24894, 60523, 148284, 366319, 910726, 2278658, 5731580, 14490245, 36797588, 93839412, 240215803, 617105614, 1590507121, 4111846763, 10660307791, 27711253769
Offset: 0

Views

Author

Keywords

Comments

Trees are unrooted, nodes are unlabeled. Every node has degree <= 4.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000628 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The degree of each node is then <= 4.

Examples

			a(6)=5 because hexane has five isomers: n-hexane; 2-methylpentane; 3-methylpentane; 2,2-dimethylbutane; 2,3-dimethylbutane. - Michael Lugo (mtlugo(AT)mit.edu), Mar 15 2003 (corrected by _Andrey V. Kulsha_, Sep 22 2011)
		

References

  • Klemens Adam, Die Anzahlbestimmung der isomeren Alkane, MNU 1983, 36, 29 (in German).
  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • L. Bytautats, D. J. Klein, Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
  • A. Cayley, Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden..., Chem. Ber. 8 (1875), 1056-1059.
  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6.1 Chemical Isomers, p. 299.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • J. B. Hendrickson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 2 on page 103.
  • M. D. Jackson and T. I. Bieber, Applications of degree distribution, 2: construction and enumeration of isomers in the alkane series, J. Chem. Info. and Computer Science, 33 (1993), 701-708.
  • J. Lederberg et al., Applications of artificial intelligence for chemical systems, I: The number of possible organic compounds. Acyclic structures containing C, H, O and N, J. Amer. Chem. Soc., 91 (1969), 2973-2097.
  • L. M. Masinter, Applications of artificial intelligence for chemical systems, XX, Exhaustive generation of cyclic and acyclic isomers, J. Amer. Chem. Soc., 96 (1974), 7702-7714.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly - compare first link below]
  • M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
  • D. H. Rouvray, An introduction to the chemical applications of graph theory, Congress. Numerant., 55 (1986), 267-280. - N. J. A. Sloane, Apr 08 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Marten J. ten Hoor, Formula for Success?, Education in Chemistry, 2005, 42(1), 10.
  • S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.

Crossrefs

Column k=4 of A144528.
A000602 = A000022 + A000200 for n>0.

Programs

  • Maple
    A000602 := proc(n)
        if n=0 then
            1
        else
            A000022(n)+A000200(n);
        end if;
    end proc:
  • Mathematica
    n = 40; (* algorithm from Rains and Sloane *)
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S4[T,h-1,z]z - S4[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A000598 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

a(n) = A010372(n) + A010373(n/2) for n even, a(n) = A010372(n) for n odd.
Also equals A000022 + A000200 (n>0), both of which have known generating functions. Also g.f. = A000678(x) - A000599(x) + A000598(x^2) = (x + x^2 + 2x^3 + ...) - (x^2 + x^3 + 3x^4 + ...) + (1 + x^2 + x^4 + ...) = 1 + x + x^2 + x^3 + 2x^4 + 3x^5 + ...
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S4,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^4 + 6*B(x)^2*B(x^2) + 8*B(x)*B(x^3) + 3*B(x^2)^2 + 6*B(x^4)) / 24, where B(x) = 1 + x * cycle_index(S3,B(x)) = 1 + x * (B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3)) / 6 is the generating function for A000598. - Robert A. Russell, Jan 16 2023

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000672 Number of 3-valent trees (= boron trees or binary trees) with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, 552, 1132, 2410, 5098, 11020, 23846, 52233, 114796, 254371, 565734, 1265579, 2841632, 6408674, 14502229, 32935002, 75021750, 171404424, 392658842, 901842517, 2076217086, 4790669518, 11077270335
Offset: 0

Views

Author

Keywords

Comments

This can be described in 2 ways: (a) Trees with n nodes of valency <= 3, for n = 0,1,2,3,... (b) Trees with t = 2n+2 nodes of valency either 1 or 3 (implying that there are n nodes of valency 3 - the boron atoms - and n+2 nodes of valency 1 - the hydrogen atoms), for t = 2,4,6,8,...
Essentially the same sequences arises from studying the number of unrooted, unlabeled binary tree topologies with n leaves (see A129860). - Steven Kelk, Jul 22 2016

Examples

			The 4 trees with 6 nodes are:
._._._._._. . ._._._._. . ._._._._. . ._._._.
. . . . . . . . | . . . . . . | . . . . | |
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 11*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • P. J. Cameron, Oligomorphic Permutation Groups, Cambridge; see Fig. 2 p. 35.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, page 33. Note that at least the first two editions give an incorrect version of this sequence.
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k = 3 of A144528.
Cf. A001190(n+1) (rooted trees).

Programs

  • Mathematica
    (* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k, 1, (n-1)/2}]; c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k], {k, 1, n/2-1}]; c[0] = 0; c[1] = 1; b[x_] := If[IntegerQ[x], c[x+1], 0]; a[0] = a[1] = a[2] = 1; a[n_] := b[n/2] - (1/3)*(b[(n-1)/3]-1)*b[(n-1)/3]*(b[(n-1)/3] + 1) + 2*b[n] - b[n+1] - Sum[(1/2)*(b[i]-1)*b[i]*b[-2*i + n - 1], {i, 1, (n-2)/2}] + Sum[b[i]*Sum[b[j]*b[n-i-j-1], {j, i, (1/2)*(n-i-1)}], {i, 1, (n-1)/3}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 19 2015 *)
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    n = 60; c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k,1,(n-1)/2}];
    c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k],
      {k,1,n/2-1}]; c[0] = 0; c[1] = 1; (* as in program 1 above *)
    gf[x_] := Sum[c[i+1] x^i, {i,0,n}]; (* g.f. for A001190(n+1) *)
    ci[x_] := SymmetricGroupIndex[3, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 +
    x ci[x], {x,0,n}]], x] (* Robert A. Russell, Jan 17 2023 *)

Formula

Rains and Sloane give a g.f.
a(0)=a(1)=a(2)=1, a(n) = 2*b(n+1) - b(n+2) + b((n+1)/2) - 2*C(1+b(n/3), 3) - Sum_{i=1..[(n-1)/2]} C(b(i), 2)*b(n-2*i) + Sum_{i=1..[n/3]} b(i) Sum_{j=i..[(n-i)/2]} b(j)*b(n-i-j), where b(x) = A001190(x+1) if x is an integer, otherwise 0 (Cyvin et al.) [Index of A001190 shifted by R. J. Mathar, Mar 08 2010]
a(n) = A000673(n) + A000675(n).
a(n) ~ c * d^n / n^(5/2), where d = A086317 = 2.4832535361726368585622885181... and c = 1.2551088797592580080398489829149157375... . - Vaclav Kotesovec, Apr 19 2016
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S3,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^3 + 3*B(x) B(x^2) + 2*B(x^3)) / 6, where B(x) = 1 + x * cycle_index(S2,B(x)) = 1 + x * (B(x)^2 + B(x^2)) / 2 is the generating function for A001190(n+1). - Robert A. Russell, Jan 17 2023

A144215 Triangle read by rows: T(n,k) is the number of forests on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 5, 6, 1, 3, 7, 9, 10, 1, 4, 11, 17, 19, 20, 1, 4, 15, 28, 34, 36, 37, 1, 5, 22, 52, 67, 73, 75, 76, 1, 5, 30, 90, 129, 144, 150, 152, 153, 1, 6, 42, 170, 264, 305, 320, 326, 328, 329, 1, 6, 56, 310, 542, 645, 686, 701, 707, 709, 710
Offset: 1

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			Triangle begins:
  1
  1 2
  1 2  3
  1 3  5  6
  1 3  7  9 10
  1 4 11 17 19 20
  1 4 15 28 34 36 37
  ...
From _Andrew Howroyd_, Dec 18 2020: (Start)
Formatted as an array to show the full columns:
========================================================
n\k  | 0 1  2   3    4    5    6    7    8    9   10
-----+--------------------------------------------------
   1 | 1 1  1   1    1    1    1    1    1    1    1 ...
   2 | 1 2  2   2    2    2    2    2    2    2    2 ...
   3 | 1 2  3   3    3    3    3    3    3    3    3 ...
   4 | 1 3  5   6    6    6    6    6    6    6    6 ...
   5 | 1 3  7   9   10   10   10   10   10   10   10 ...
   6 | 1 4 11  17   19   20   20   20   20   20   20 ...
   7 | 1 4 15  28   34   36   37   37   37   37   37 ...
   8 | 1 5 22  52   67   73   75   76   76   76   76 ...
   9 | 1 5 30  90  129  144  150  152  153  153  153 ...
  10 | 1 6 42 170  264  305  320  326  328  329  329 ...
  11 | 1 6 56 310  542  645  686  701  707  709  710 ...
  12 | 1 7 77 600 1161 1431 1536 1577 1592 1598 1600 ...
(End)
		

Crossrefs

The final diagonal gives A005195.
Column k=2 is A000041.

Programs

  • PARI
    \\ Here V(n,k) gives column k of A144528.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={Mat(vector(m, k, EulerT(V(n,k-1)[2..1+n])~))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020

Formula

Column k is Euler transform of column k of A144528. - Andrew Howroyd, Dec 18 2020

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 18 2020

A036650 Number of 5-valent trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 10, 21, 42, 94, 204, 473, 1098, 2633, 6353, 15641, 38789, 97416, 246410, 628726, 1614292, 4171955, 10839366, 28308678, 74266477, 195667533, 517504253, 1373640355, 3658205088, 9772510063, 26181295237, 70330621171
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A144528; A036718 (rooted trees).

Programs

  • Mathematica
    n = 30; (* algorithm from Rains and Sloane *)
    S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
    S5[f_,h_,x_] := f[h,x]^5/120 + f[h,x]^3 f[h,x^2]/12 + f[h,x]^2 f[h,x^3]/6 + f[h,x] f[h,x^2]^2/8 + f[h,x] f[h,x^4]/4 + f[h,x^2] f[h,x^3]/6 + f[h,x^5]/5;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S4[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S5[T,h-1,z]z - S5[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{0,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 4; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A036718 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

a(n) = A036648(n) + A036649(n) for n > 0.
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S5,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^5 + 10*B(x)^3*B(x^2) + 15*B(x)*B(x^2)^2 + 20*B(x)^2*B(x^3) + 20*B(x^2)*B(x^3) + 30*B(x)*B(x^4) + 24*B(x^5)) / 120, where B(x) = 1 + x * cycle_index(S4,B(x)) = 1 + x * (B(x)^4 + 6*B(x)^2*B(x^2) + 8*B(x)*B(x^3) + 3*B(x^2)^2 + 6*B(x^4)) / 24 is the generating function for A036718. - Robert A. Russell, Jan 19 2023

Extensions

a(0) changed to 1 by Andrew Howroyd, Dec 18 2020

A036653 Number of 6-valent trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 22, 45, 101, 223, 520, 1223, 2954, 7208, 17905, 44863, 113738, 290605, 748711, 1941592, 5067433, 13297590, 35074788, 92939166, 247317085, 660681399, 1771321949, 4764829720, 12857155911, 34793296227, 94410222996, 256826514689, 700311754812, 1913868186951
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=6 of A144528; A036721 (rooted trees).

Programs

  • Mathematica
    n = 20; (* algorithm from Rains and Sloane *)
    S5[f_,h_,x_] := f[h,x]^5/120 + f[h,x]^3 f[h,x^2]/12 + f[h,x]^2 f[h,x^3]/6 + f[h,x] f[h,x^2]^2/8 + f[h,x] f[h,x^4]/4 + f[h,x^2] f[h,x^3]/6 + f[h,x^5]/5;
    S6[f_,h_,x_] := f[h,x]^6/720 + f[h,x]^4 f[h,x^2]/48 + f[h,x]^3 f[h,x^3]/18 + f[h,x]^2 f[h,x^2]^2/16 + f[h,x]^2 f[h,x^4]/8 + f[h,x] f[h,x^2] f[h,x^3]/6 + f[h,x] f[h,x^5]/5 + f[h,x^2]^3/48 + f[h,x^2] f[h,x^4]/8 + f[h,x^3]^2/18 + f[h,x^6]/6;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S5[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S6[T,h-1,z]z - S6[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{0,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 5; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A036721 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

a(n) = A036651(n) + A036652(n) for n > 0.
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S6,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^6 + 15*B(x)^4*B(x^2) + 45*B(x)^2*B(x^2)^2 + 15*B(x^2)^3 + 40*B(x)^3*B(x^3) + 120*B(x)*B(x^2)*B(x^3) + 40*B(x^3)^2 + 90*B(x)^2*B(x^4) + 90*B(x^2)*B(x^4) + 144*B(x)*B(x^5) + 120*B(x^6)) / 720, where B(x) = 1 + x * cycle_index(S5,B(x)) = 1 + x * (B(x)^5 + 10*B(x)^3*B(x^2) + 15*B(x)*B(x^2)^2 + 20*B(x)^2*B(x^3) + 20*B(x^2)*B(x^3) + 30*B(x)*B(x^4) + 24*B(x^5)) / 120 is the generating function for A036721. - Robert A. Russell, Jan 19 2023

Extensions

a(0) changed to 1 and terms a(32) and beyond from Andrew Howroyd, Dec 18 2020

A238414 Triangle read by rows: T(n,k) is the number of trees with n vertices having maximum vertex degree k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 5, 3, 1, 1, 0, 0, 1, 10, 7, 3, 1, 1, 0, 0, 1, 17, 17, 7, 3, 1, 1, 0, 0, 1, 36, 38, 19, 7, 3, 1, 1, 0, 0, 1, 65, 93, 45, 19, 7, 3, 1, 1, 0, 0, 1, 134, 220, 118, 47, 19, 7, 3, 1, 1, 0, 0, 1, 264, 537, 296, 125, 47, 19, 7, 3, 1, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 05 2014

Keywords

Comments

Sum of entries in row n is A000055(n) (= number of trees with n vertices).
The author knows of no formula for T(n,k). The entries have been obtained in the following manner, explained for row n = 7. In A235111 we find that the 11 (= A000055(7)) trees with 7 vertices have M-indices 25, 27, 30, 35, 36, 40, 42, 48, 49, 56, and 64 (the M-index of a tree t is the smallest of the Matula numbers of the rooted trees isomorphic, as a tree, to t). Making use of the formula in A196046, from these Matula numbers one obtains the maximum vertex degrees: 2, 3, 3, 3, 4, 4, 3, 5, 3, 4, 6; the frequencies of 2,3,4,5,6 are 1, 5, 3, 1, 1, respectively. See the Maple program.
This sequence may be derived from A144528 which can be efficiently computed in the same manner as A000055. - Andrew Howroyd, Dec 17 2020

Examples

			Row n=4 is T(4,2)=1,T(4,3)=1; indeed, the maximum vertex degree in the path P[4] is 2, while in the star S[4] it is 3.
Triangle starts:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1,  1;
  0, 0, 1,  1,  1;
  0, 0, 1,  3,  1, 1;
  0, 0, 1,  5,  3, 1, 1;
  0, 0, 1, 10,  7, 3, 1, 1;
  0, 0, 1, 17, 17, 7, 3, 1, 1;
  ...
		

Crossrefs

Row sums are A000055.
Cf. A144528, A196046, A235111, A332760 (connected graphs), A339788 (forests).

Programs

  • Maple
    MI := [25, 27, 30, 35, 36, 40, 42, 48, 49, 56, 64]: with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then max(a(pi(n)), 1+bigomega(pi(n))) else max(a(r(n)), a(s(n)), bigomega(r(n))+bigomega(s(n))) end if end proc: g := add(x^a(MI[j]), j = 1 .. nops(MI)): seq(coeff(g, x, q), q = 2 .. 6);
  • PARI
    \\ Here V(n, k) gives column k of A144528.
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={my(v=vector(m, k, V(n,k-1)[2..1+n]~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020

Formula

T(n,k) = A144528(n,k) - A144528(n, k-1) for k > 0. - Andrew Howroyd, Dec 17 2020

Extensions

Columns k=0..1 inserted by Andrew Howroyd, Dec 18 2020

A339788 Triangle read by rows: T(n,k) is the number of forests with n unlabeled vertices and maximum vertex degree k, (0 <= k < n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 6, 2, 1, 1, 3, 11, 13, 6, 2, 1, 1, 4, 17, 30, 15, 6, 2, 1, 1, 4, 25, 60, 39, 15, 6, 2, 1, 1, 5, 36, 128, 94, 41, 15, 6, 2, 1, 1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1, 1, 6, 70, 523, 561, 270, 105, 41, 15, 6, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 18 2020

Keywords

Comments

A forest is an acyclic graph.
(The component trees here are not rooted. - N. J. A. Sloane, Dec 19 2020)

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 2,  4,   2,   1;
  1, 3,  7,   6,   2,   1;
  1, 3, 11,  13,   6,   2,  1;
  1, 4, 17,  30,  15,   6,  2,  1;
  1, 4, 25,  60,  39,  15,  6,  2, 1;
  1, 5, 36, 128,  94,  41, 15,  6, 2, 1;
  1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1;
  ...
		

Crossrefs

Row sums are A005195.
Cf. A144215 (max degree <= k), A144528, A238414 (trees), A263293 (graphs).

Programs

  • PARI
    \\ Here V(n, k) gives column k of A144528.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={my(v=vector(m, k, EulerT(V(n,k-1)[2..1+n])~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }

Formula

T(n,k) = A144215(n,k) - A144215(n,k-1) for k > 0.

A144520 a(n) = A000055(n) - 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 10, 22, 46, 105, 234, 550, 1300, 3158, 7740, 19319, 48628, 123866, 317954, 823064, 2144504, 5623755, 14828073, 39299896, 104636889, 279793449, 751065459, 2023443031, 5469566584, 14830871801, 40330829029, 109972410220, 300628862479
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Comments

Number of free trees with n nodes, each node with degree <= n-2. - Robert A. Russell, Jan 25 2023

Crossrefs

Programs

  • Mathematica
    b[n_,i_,t_,k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,k,k]
      + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
      b[0,i_,t_,k_] = 1;
    Join[{0,0,0,0,1}, Table[m = n - 3;
      gf[x_] := 1 + Sum[b[j - 1, j - 1, m, m] x^j, {j, 1, n}];
      ci[x_] := SymmetricGroupIndex[m + 1, x] /. x[i_] -> gf[x^i];
      SeriesCoefficient[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}], n], {n,5,35}]] (* Robert A. Russell, Jan 25 2023 *)

Formula

a(n) = A144528(n,n-2). - Robert A. Russell, Jan 25 2023

A144527 a(n) = A000055(n) - 2.

Original entry on oeis.org

0, 1, 4, 9, 21, 45, 104, 233, 549, 1299, 3157, 7739, 19318, 48627, 123865, 317953, 823063, 2144503, 5623754, 14828072, 39299895, 104636888, 279793448, 751065458, 2023443030, 5469566583, 14830871800, 40330829028, 109972410219, 300628862478, 823779631719
Offset: 4

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Comments

Number of free trees with n nodes, each node with degree <= n-3. - Robert A. Russell, Jan 25 2023

Crossrefs

Programs

  • Mathematica
    b[n_,i_,t_,k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,k,k]
      + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
      b[0,i_,t_,k_] = 1;
    Join[{0, 1}, Table[m = n - 4;
      gf[x_] := 1 + Sum[b[j - 1, j - 1, m, m] x^j, {j, 1, n}];
      ci[x_] := SymmetricGroupIndex[m + 1, x] /. x[i_] -> gf[x^i];
      SeriesCoefficient[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}], n], {n,6,35}]] (* Robert A. Russell, Jan 25 2023 *)

Formula

a(n) = A144528(n,n-3). - Robert A. Russell, Jan 25 2023

A359392 Number of trees on n unlabeled nodes with all nodes of degree <= 7.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 23, 46, 104, 230, 539, 1270, 3081, 7536, 18785, 47207, 120074, 307739, 795426, 2069248, 5418014, 14263084, 37742929, 100331646, 267854040, 717863832, 1930888297, 5210968114, 14106844554
Offset: 0

Views

Author

Robert A. Russell, Dec 29 2022

Keywords

Crossrefs

Column k=7 of A144528; A036722 (rooted trees).

Programs

  • Mathematica
    n = 30; (* algorithm from Rains and Sloane *)
    m = 7; (* maximum degree of node *)
    CIm[f_, h_, x_] =  SymmetricGroupIndex[m-1, x] /. x[i_] -> f[h, x^i];
    CI[f_, h_, x_] = SymmetricGroupIndex[m, x] /. x[i_] -> f[h, x^i];
    T[-1, z_] := 1; T[h_, z_] :=  T[h, z] = Table[z^k, {k, 0, n}] .
      Take[CoefficientList[z^(n+1) + 1 + CIm[T, h-1, z] z, z], n+1];
    ReplacePart[Sum[Take[CoefficientList[z^(n+1) + CI[T, h-1, z] z - CI[T, h-2, z] z - (T[h-1, z] - T[h-2, z]) (T[h-1, z] - 1), z], n+1], {h, 1, n/2}] + PadRight[{0, 1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h, z]
      - T[h-1, z])^2/2 + (T[h, z^2] - T[h-1, z^2])/2, z], n+1], {h, 0, n/2}],
      1->1] (* end of original program *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 6; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A036722 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S7,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^7 + 21 B(x)^5 B(x^2) + 105 B(x)^3 B(x^2)^2 + 105 B(x) B(x^2)^3 + 70 B(x)^4 B(x^3) + 420 B(x)^2 B(x^2) B(x^3) + 210 B(x^2)^2 B(x^3) + 280 B(x) B(x^3)^2 + 210 B(x)^3 B(x^4) + 630 B(x) B(x^2) B(x^4) + 420 B(x^3) B(x^4) + 504 B(x)^2 B(x^5) + 504 B(x^2) B(x^5) + 840 B(x) B(x^6) + 720 B(x^7)) / 5040, where B(x) = 1 + x * cycle_index(S6,B(x)) = 1 + x * (B(x)^6 + 15*B(x)^4*B(x^2) + 45*B(x)^2*B(x^2)^2 + 15*B(x^2)^3 + 40*B(x)^3*B(x^3) + 120*B(x)*B(x^2)*B(x^3) + 40*B(x^3)^2 + 90*B(x)^2*B(x^4) + 90*B(x^2)*B(x^4) + 144*B(x)*B(x^5) + 120*B(x^6)) / 720 is the generating function for A036722. - Robert A. Russell, Jan 19 2023
Showing 1-10 of 10 results.