cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005195 Number of forests with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 37, 76, 153, 329, 710, 1601, 3658, 8599, 20514, 49905, 122963, 307199, 775529, 1977878, 5086638, 13184156, 34402932, 90328674, 238474986, 632775648, 1686705630, 4514955632, 12132227370, 32717113805, 88519867048, 240235675303
Offset: 0

Views

Author

Keywords

Comments

Same as "Number of forests with n nodes that are perfect graphs" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
Number of unlabeled acyclic graphs on n vertices. The labeled version is A001858. The covering case is A144958, connected A000055. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 10 forests:
  {}  {}  {}    {}       {}          {}
          {12}  {12}     {12}        {12}
                {13,23}  {12,34}     {12,34}
                         {13,23}     {13,23}
                         {13,24,34}  {12,35,45}
                         {14,24,34}  {13,24,34}
                                     {14,24,34}
                                     {13,24,35,45}
                                     {14,25,35,45}
                                     {15,25,35,45}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 58-59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A095133 (by number of trees), A136605 (by number of edges).
A diagonal of A144215.
The connected case is A000055.
The labeled version is A001858.
The covering case is A144958, labeled A105784.
For triangles instead of cycles we have A006785, covering A372169.
Unique cycle: A236570 (labeled A372193), covering A372191 (labeled A372195).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    EulerTransform[ seq_List ] := With[{m = Length[seq]}, CoefficientList[ Series[ Times @@ (1/(1 - x^Range[m])^seq), {x, 0, m}], x]];
    b[n_] := b[n] = If[n <= 1, n, Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}]/(n - 1)];
    a55[n_] := a55[n] = If[n == 0, 1, b[n] - (Sum[ b[k]*b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2]; A000055 = Table[ a55[n], {n, 1, 31}]; EulerTransform[ A000055 ] (* Jean-François Alcover, Mar 15 2012 *)

Formula

Euler transform of A000055: Product_{n>0} (1-x^n)^(-A000055(n)). a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*A000055(d). - Vladeta Jovovic, Sep 05 2002
G.f.: exp(sum_{k>0} B(x^k)/k ), where B(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + ... = C(x)-1 and C is the g.f. for A000055.
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856519949747148..., c = 1.023158422... . - Vaclav Kotesovec, Nov 16 2014
First differences are A144958. - Gus Wiseman, Apr 29 2024

Extensions

More terms from Vladeta Jovovic, Sep 05 2002

A144528 Triangle read by rows: T(n,k) is the number of trees on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 3, 0, 0, 1, 4, 5, 6, 0, 0, 1, 6, 9, 10, 11, 0, 0, 1, 11, 18, 21, 22, 23, 0, 0, 1, 18, 35, 42, 45, 46, 47, 0, 0, 1, 37, 75, 94, 101, 104, 105, 106, 0, 0, 1, 66, 159, 204, 223, 230, 233, 234, 235, 0, 0, 1, 135, 355, 473, 520, 539, 546, 549, 550, 551
Offset: 1

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 0 1
  0 0 1  2
  0 0 1  2  3
  0 0 1  4  5  6
  0 0 1  6  9 10  11
  0 0 1 11 18 21  22  23
  0 0 1 18 35 42  45  46  47
  0 0 1 37 75 94 101 104 105 106
  ...
From _Andrew Howroyd_, Dec 17 2020: (Start)
Formatted as an array to show the full columns:
================================================
n\k  | 0 1 2   3   4   5   6   7   8   9  10
-----+------------------------------------------
   1 | 1 1 1   1   1   1   1   1   1   1   1 ...
   2 | 0 1 1   1   1   1   1   1   1   1   1 ...
   3 | 0 0 1   1   1   1   1   1   1   1   1 ...
   4 | 0 0 1   2   2   2   2   2   2   2   2 ...
   5 | 0 0 1   2   3   3   3   3   3   3   3 ...
   6 | 0 0 1   4   5   6   6   6   6   6   6 ...
   7 | 0 0 1   6   9  10  11  11  11  11  11 ...
   8 | 0 0 1  11  18  21  22  23  23  23  23 ...
   9 | 0 0 1  18  35  42  45  46  47  47  47 ...
  10 | 0 0 1  37  75  94 101 104 105 106 106 ...
  11 | 0 0 1  66 159 204 223 230 233 234 235 ...
  12 | 0 0 1 135 355 473 520 539 546 549 550 ...
  ...
(End)
		

Crossrefs

Columns k=2..7 are A000012, A000672, A000602, A036650, A036653, A359392.
The last three diagonals give A144527, A144520, A000055.

Programs

  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[i<1, 0, Sum[Binomial[b[i-1, i-1,
      k, k] + j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; a = {}; nmax = 20;
    For[ni=2, ni < nmax-1, ni++, (* columns 3 to max-1 *)
      gf[x_] = 1 + Sum[b[j-1, j-1, ni, ni] x^j, {j, 1, nmax}];
      ci[x_] = SymmetricGroupIndex[ni+1, x] /. x[i_] -> gf[x^i];
      a = Append[a, CoefficientList[Normal[Series[
        gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x], {x, 0, nmax}]], x]];]
    Join[{1, 0, 1, 0, 0, 1}, Table[Join[{0, 0, 1}, Table[a[[k-3]][[n+1]],
    {k, 4, n}]], {n, 4, nmax}]] // Flatten (* Robert A. Russell, Feb 05 2023 *)
  • PARI
    \\ here V(n,k) gives column k as a vector.
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={Mat(vector(m, k, V(n,k-1)[2..1+n]~))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020

Extensions

a(53) corrected and terms a(56) and beyond from Andrew Howroyd, Dec 17 2020

A339788 Triangle read by rows: T(n,k) is the number of forests with n unlabeled vertices and maximum vertex degree k, (0 <= k < n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 6, 2, 1, 1, 3, 11, 13, 6, 2, 1, 1, 4, 17, 30, 15, 6, 2, 1, 1, 4, 25, 60, 39, 15, 6, 2, 1, 1, 5, 36, 128, 94, 41, 15, 6, 2, 1, 1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1, 1, 6, 70, 523, 561, 270, 105, 41, 15, 6, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 18 2020

Keywords

Comments

A forest is an acyclic graph.
(The component trees here are not rooted. - N. J. A. Sloane, Dec 19 2020)

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,   1;
  1, 2,  4,   2,   1;
  1, 3,  7,   6,   2,   1;
  1, 3, 11,  13,   6,   2,  1;
  1, 4, 17,  30,  15,   6,  2,  1;
  1, 4, 25,  60,  39,  15,  6,  2, 1;
  1, 5, 36, 128,  94,  41, 15,  6, 2, 1;
  1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1;
  ...
		

Crossrefs

Row sums are A005195.
Cf. A144215 (max degree <= k), A144528, A238414 (trees), A263293 (graphs).

Programs

  • PARI
    \\ Here V(n, k) gives column k of A144528.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={my(v=vector(m, k, EulerT(V(n,k-1)[2..1+n])~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }

Formula

T(n,k) = A144215(n,k) - A144215(n,k-1) for k > 0.

A144529 Triangle read by rows: T(n,k) = number of edges in graph whose vertices are forests with n unlabeled nodes and degree <= k and in which two vertices are joined by an edge if the forests differ (up to isomorphism) by exactly one edge.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 2, 5, 6, 0, 2, 9, 13, 14, 0, 3, 18, 32, 36, 37, 0, 3, 28, 67, 82, 87, 88
Offset: 1

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Comments

The number of nodes in this graph is given by A144215.

Examples

			Triangle begins:
0
0 1
0 1 2
0 2 5 6
0 2 9 13 14
0 3 18 32 36 37
0 3 28 67 82 87 88
		

Crossrefs

Cf. A144530.
Showing 1-4 of 4 results.