cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 60 results. Next

A123423 Duplicate of A005195.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 37, 76, 153, 329
Offset: 1

Views

Author

Keywords

A144978 A005195(n) - A005195(n-2).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 56, 116, 253, 557, 1272, 2948, 6998, 16856, 41306, 102449, 257294, 652566, 1670679, 4311109, 11206278, 29316294, 77144518, 204072054, 542446974, 1448230644, 3882179984, 10445521740, 28202158173, 76387639678
Offset: 1

Views

Author

Washington Bomfim, Sep 28 2008

Keywords

Comments

a(n) is the number of forests with n unlabeled nodes without trees of order 2. This follows from the fact that for n>=2 A005195(n-2) counts the forests of order n with one or more trees of order 2.
The unique forest of order 1 is an isolated vertex, so a(1)=1. For n>=2, a(n) - a(n-1) counts forests of order n with trees of order >=3.
A005195(n) - A005195(n-3) counts forests of order n without trees of order 3.

Examples

			a(5) = 7 since the only options are: 3 trees of order 5; 2 forests composed by trees of orders 4 and l; one forest with trees of orders [3 1 1]; and one forest with five isolated nodes.
		

Crossrefs

Cf. A005195, A000055(trees).

A000055 Number of trees with n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890, 279793450, 751065460, 2023443032, 5469566585, 14830871802, 40330829030, 109972410221, 300628862480, 823779631721, 2262366343746, 6226306037178
Offset: 0

Views

Author

Keywords

Comments

Also, number of unlabeled 2-gonal 2-trees with n-1 2-gons, for n>0. [Corrected by Andrei Zabolotskii, Jul 29 2025]
Main diagonal of A054924.
Left border of A157905. - Gary W. Adamson, Mar 08 2009
From Robert Munafo, Jan 24 2010: (Start)
Also counts classifications of n items that require exactly n-1 binary partitions; see Munafo link at A005646, also A171871 and A171872.
The 11 trees for n = 7 are illustrated at the Munafo web link.
Link to A171871/A171872 conjectured by Robert Munafo, then proved by Andrew Weimholt and Franklin T. Adams-Watters on Dec 29 2009. (End)
This is also "Number of tree perfect graphs on n nodes" [see Hougardy]. - N. J. A. Sloane, Dec 04 2015
For n > 0, a(n) is the number of ways to arrange n-1 unlabeled non-intersecting circles on a sphere. - Vladimir Reshetnikov, Aug 25 2016
All trees for n=1 through n=12 are depicted in Chapter 1 of the Steinbach reference. On p. 6 appear encircled two trees (with n=10) which seem inequivalent only when considered as ordered (planar) trees. Earlier instances of such possibly (in)equivalent trees could appear from n=6 on (and from n=9 on without equivalence modulo plane symmetry) but are not drawn separately there. - M. F. Hasler, Aug 29 2017

Examples

			a(1) = 1 [o]; a(2) = 1 [o-o]; a(3) = 1 [o-o-o];
a(4) = 2 [o-o-o and o-o-o-o]
            |
            o
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 55.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 459).
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000676 (centered trees), A000677 (bicentered trees), A027416 (trees with a centroid), A102011 (trees with a bicentroid), A034853 (refined by diameter), A238414 (refined by maximum vertex degree).
Cf. A000081 (rooted trees), A000272 (labeled trees), A000169 (labeled rooted trees), A212809 (radius of convergence).
Cf. A036361 (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A054581 (unlabeled 2-trees).
Cf. A157904, A157905, A005195 (Euler transform = forests), A095133 (multisets).
Column 0 of A335362 and A034799.
Related to A005646; see A171871 and A171872.

Programs

  • Haskell
    import Data.List (generic_index)
    import Math.OEIS (getSequenceByID)
    triangle x = (x * x + x) `div` 2
    a000055 n = let {r = genericIndex (fromJust (getSequenceByID "A000081")); (m, nEO) = divMod n 2}
                in  r n - sum (zipWith (*) (map r [0..m]) (map r [n, n-1..]))
                    + (1-nEO) * (triangle (r m + 1))
    -- Walt Rorie-Baety, Jun 12 2021
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; G000055 := 1 + G - G^2/2 + Evaluate(G,x^2)/2; A000055 := Eltseq(G000055); // Geoff Baileu (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    G000055 := series(1+G000081-G000081^2/2+subs(x=x^2,G000081)/2,x,31); A000055 := n->coeff(G000055,x,n); # where G000081 is g.f. for A000081 starting with n=1 term
    with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> `if`(n=0, 1, b(n) -(add(b(k) *b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2):
    seq(a(n), n=0..50);
    # Alois P. Heinz, Aug 21 2008
    # Program to create b-file b000055.txt:
    A000081 := proc(n) option remember; local d, j;
    if n <= 1 then n else
        add(add(d*procname(d),d=numtheory[divisors](j))*procname(n-j),j=1..n-1)/(n-1);
    fi end:
    A000055 := proc(nmax) local a81, n, t, a, j, i ;
    a81 := [seq(A000081(i), i=0..nmax)] ; a := [] ;
    for n from 0 to nmax do
        if n = 0 then
            t := 1+op(n+1, a81) ;
        else
            t := op(n+1, a81) ;
        fi;
        if type(n, even) then
            t := t-op(1+n/2, a81)^2/2 ;
            t := t+op(1+n/2, a81)/2 ;
        fi;
        for j from 0 to (n-1)/2 do
            t := t-op(j+1, a81)*op(n-j+1, a81) ;
        od:
        a := [op(a), t] ;
    od:
    a end:
    L := A000055(1000) ;
    #  R. J. Mathar, Mar 06 2009
  • Mathematica
    s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n-1, i] i, {i, 1, n-1}] / (n-1); Table[a[i] - Sum[a[j] a[i-j], {j, 1, i/2}] + If[OddQ[i], 0, a[i/2] (a[i/2] + 1)/2], {i, 1, 50}] (* Robert A. Russell *)
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[d*b[d]*b[n-j], {j, 1, n-1}, {d, Divisors[j]}]/(n-1); a[0] = 1; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
  • PARI
    {a(n) = local(A, A1, an, i, t); if( n<2, n>=0, an = Vec(A = A1 = 1 + O('x^n)); for(m=2, n, i=m\2; an[m] = sum(k=1, i, an[k] * an[m-k]) + (t = polcoeff( if( m%2, A *= (A1 - 'x^i)^-an[i], A), m-1))); t + if( n%2==0, binomial( -polcoeff(A, i-1), 2)))}; /* Michael Somos */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
    A000081=concat([0], A);
    H(t)=subst(Ser(A000081, 't), 't, t);
    x='x+O('x^N);
    Vec( 1 + H(x) - 1/2*( H(x)^2 - H(x^2) ) )
    \\ Joerg Arndt, Jul 10 2014
    
  • Python
    # uses function from A000081
    def A000055(n): return 1 if n == 0 else A000081(n)-sum(A000081(i)*A000081(n-i) for i in range(1,n//2+1)) + (0 if n % 2 else (A000081(n//2)+1)*A000081(n//2)//2) # Chai Wah Wu, Feb 03 2022
  • SageMath
    [len(list(graphs.trees(n))) for n in range(16)] # Peter Luschny, Mar 01 2020
    

Formula

G.f.: A(x) = 1 + T(x) - T^2(x)/2 + T(x^2)/2, where T(x) = x + x^2 + 2*x^3 + ... is the g.f. for A000081.
a(n) ~ A086308 * A051491^n * n^(-5/2). - Vaclav Kotesovec, Jan 04 2013
a(n) = A000081(n) - A217420(n+1), n > 0. - R. J. Mathar, Sep 19 2016
a(n) = A000676(n) + A000677(n). - R. J. Mathar, Aug 13 2018
a(n) = A000081(n) - (Sum_{1<=i<=j, i+j=n} A000081(i)*A000081(j)) + (1-(-1)^(n-1)) * binomial(A000081(n/2)+1,2) / 2 [Li, equation 4.2]. - Walt Rorie-Baety, Jul 05 2021

A001858 Number of forests of trees on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 7, 38, 291, 2932, 36961, 561948, 10026505, 205608536, 4767440679, 123373203208, 3525630110107, 110284283006640, 3748357699560961, 137557910094840848, 5421179050350334929, 228359487335194570528, 10239206473040881277575, 486909744862576654283616
Offset: 0

Views

Author

Keywords

Comments

The number of integer lattice points in the permutation polytope of {1,2,...,n}. - Max Alekseyev, Jan 26 2010
Equals the number of score sequences for a tournament on n vertices. See Prop. 7 of the article by Bartels et al., or Example 3.1 in the article by Stanley. - David Radcliffe, Aug 02 2022
Number of labeled acyclic graphs on n vertices. The unlabeled version is A005195. The covering case is A105784, connected A000272. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of the a(4) = 38 forests:
  {}  {12}  {12,13}  {12,13,14}
      {13}  {12,14}  {12,13,24}
      {14}  {12,23}  {12,13,34}
      {23}  {12,24}  {12,14,23}
      {24}  {12,34}  {12,14,34}
      {34}  {13,14}  {12,23,24}
            {13,23}  {12,23,34}
            {13,24}  {12,24,34}
            {13,34}  {13,14,23}
            {14,23}  {13,14,24}
            {14,24}  {13,23,24}
            {14,34}  {13,23,34}
            {23,24}  {13,24,34}
            {23,34}  {14,23,24}
            {24,34}  {14,23,34}
                     {14,24,34}
(End)
		

References

  • B. Bollobas, Modern Graph Theory, Springer, 1998, p. 290.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A000272, rooted A000169.
The unlabeled version is A005195, connected A000055.
The covering case is A105784, unlabeled A144958.
Row sums of A138464.
For triangles instead of cycles we have A213434, covering A372168.
For a unique cycle we have A372193, covering A372195.
A002807 counts cycles in a complete graph.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Maple
    exp(x+x^2+add(n^(n-2)*x^n/n!, n=3..50));
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*j^(j-2)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 15 2008
    # third Maple program:
    F:= exp(-LambertW(-x)*(1+LambertW(-x)/2)):
    S:= series(F,x,51):
    seq(coeff(S,x,j)*j!, j=0..50); # Robert Israel, May 21 2015
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t-t^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2012 *)
    nmax = 20; CoefficientList[Series[-LambertW[-x]/(x*E^(LambertW[-x]^2/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 19 2019 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n-1,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!)) /* Michael Somos, Aug 22 2002 */

Formula

E.g.f.: exp( Sum_{n>=1} n^(n-2)*x^n/n! ). This implies (by a theorem of Wright) that a(n) ~ exp(1/2)*n^(n-2). - N. J. A. Sloane, May 12 2008 [Corrected by Philippe Flajolet, Aug 17 2008]
E.g.f.: exp(T - T^2/2), where T = T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is Euler's tree function (see A000169). - Len Smiley, Dec 12 2001
Shifts 1 place left under the hyperbinomial transform (cf. A088956). - Paul D. Hanna, Nov 03 2003
a(0) = 1, a(n) = Sum_{j=0..n-1} C(n-1,j) (j+1)^(j-1) a(n-1-j) if n>0. - Alois P. Heinz, Sep 15 2008

Extensions

More terms from Michael Somos, Aug 22 2002

A140637 Number of unlabeled graphs of positive excess with n nodes.

Original entry on oeis.org

0, 0, 0, 2, 15, 110, 936, 12073, 273972, 12003332, 1018992968, 165091159269, 50502031331411, 29054155657134165, 31426485969804026075, 64001015704527557101231, 245935864153532932681481794, 1787577725145611700547871854870, 24637809253125004524383007473440146
Offset: 1

Views

Author

Washington Bomfim, May 21 2008

Keywords

Comments

We can find in "The Birth of the Giant Component" p. 53, see the link, the following: "The excess of a graph or multigraph is the number of edges plus the number of acyclic components, minus the number of vertices."
If G has just one complex component with 4 nodes, the "non-complex part" of G can be,
a) One forest of order 4. There are 6 forests, so 2*6=12 graphs.
b) One triangle and one isolated vertex, or 2*1=2 graphs.
c) One unicyclic graph of order 4, so 2*2=4 graphs.
Also the number of unchoosable unlabeled graphs with up to n vertices, where a graph is choosable iff it is possible to choose a different vertex from each edge. The labeled version is A367867, covering A367868, connected A140638. - Gus Wiseman, Feb 13 2024

Examples

			Below we show that a(8) = 12073. Note that A140636(n) is the number of connected graphs of positive excess with n nodes.
Let G be a disconnected graph of positive excess with 8 nodes. In this case, G has one or two complex components. We have 3 graphs of order 8 with two complex components. One of those graphs is depicted in the figure below:
  O---O...O---O
  |\..|...|\./|
  |.\.|...|.X.|
  |..\|...|/.\|
  O---O...O---O
If G has one complex component with 5 nodes, the non-complex part of G can be,
a) One forest of order 3. There are 3 forests, so A140636(5) * 3 = 39 graphs.
b) One triangle, so A140636(5) = 13 graphs.
If G has one complex component with 6 nodes, the non-complex part of G is a forest of order 2. There are 2 forests. We have A140636(6) * 2, or 186 graphs.
If G has one complex component with 7 nodes, the non-complex part of G is one isolated vertex. We have A140636(7), or 809 graphs.
Finally if G is connected, we have A140636(8), or 11005 graphs.
The total is 3 + 12 + 2 + 4 + 39 + 13 + 186 + 809 + 11005 = 12073.
		

Crossrefs

The labeled complement is A133686, covering A367869, connected A129271.
The complement is A134964, connected A005703.
The connected covering case is A140636.
The labeled version is A367867, covering A367868, connected A140638.
Set-systems not of this type are A367902, ranks A367906.
Set-systems of this type are A367903, ranks A367907.
For set-systems we have A368094, complement A368095.
For multiset partitions we have A368097, complement A368098.
Factorizations of this type are A368413, complement A368414.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,5}] (* Gus Wiseman, Feb 14 2024 *)

Formula

a(n) = A000088(n) - A134964(n).

A005470 Number of unlabeled planar simple graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 11, 33, 142, 822, 6966, 79853, 1140916, 18681008, 333312451
Offset: 0

Views

Author

Keywords

Comments

Euler transform of A003094. - Christian G. Bower

Examples

			a(2) = 2 since o o and o-o are the two planar simple graphs on two nodes.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Trotter, ed., Planar Graphs, Vol. 9, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Amer. Math. Soc., 1993.
  • Turner, James; Kautz, William H. A survey of progress in graph theory in the Soviet Union. SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 19. - N. J. A. Sloane, Apr 08 2014
  • Vetukhnovskii, F. Ya. "Estimate of the Number of Planar Graphs." In Soviet Physics Doklady, vol. 7, pp. 7-9. 1962. - From N. J. A. Sloane, Apr 08 2014
  • R. J. Wilson, Introduction to Graph Theory. Academic Press, NY, 1972, p. 162.

Crossrefs

Cf. A003094 (connected planar graphs), A034889, A039735 (planar graphs by nodes and edges).
Cf. A126201.

Programs

  • Mathematica
    A003094 = Cases[Import["https://oeis.org/A003094/b003094.txt", "Table"], {, }][[All, 2]];
    (* EulerTransform is defined in A005195 *)
    EulerTransform[Rest @ A003094] (* Jean-François Alcover, Apr 25 2013, updated Mar 17 2020 *)

Extensions

n=8 term corrected and n=9..11 terms calculated by Brendan McKay
Terms a(0) - a(10) confirmed by David Applegate and N. J. A. Sloane, Mar 09 2007
a(12) added by Vaclav Kotesovec after A003094 (computed by Brendan McKay), Dec 06 2014

A033995 Number of bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 88, 303, 1119, 5479, 32303, 251135, 2527712, 33985853, 611846940, 14864650924, 488222721992, 21712049275198, 1308300679611469, 106897965189674291, 11852113048215107822, 1784730721403509209215, 365323537513403184463273
Offset: 0

Views

Author

Ronald C. Read

Keywords

Comments

All bipartite graphs are perfect. - Falk Hüffner, Nov 27 2015
EULER transform of A005142 [1, 1, 1, 3, 5, 17, ...] is [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

Examples

			For n=1: o; n=2: o o, o-o; n=3: o o o, o o-o, o-o-o; n=4: o o o o, o o o-o, o-o o-o, o o-o-o, o-o-o-o, K_{2,2}, K_{3,1}. - _Michael Somos_, May 13 2019
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

Row sums of A297877.
The labeled version is A047864.
Equals A076278(n) + 1.
Cf. A005142 (connected).

Programs

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Sep 05 2018

A033301 Number of 4-valent (or quartic) graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 60, 266, 1547, 10786, 88193, 805579, 8037796, 86223660, 985883873, 11946592242, 152808993767, 2056701139136, 29051369533596, 429669276147047, 6640178380127244, 107026751932268789, 1796103830404560857, 31334029441145918974, 567437704731717802783
Offset: 0

Views

Author

Ronald C. Read

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (n-5)-regular graphs on n vertices. - Jason Kimberley, Sep 22 2009

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

4-regular simple graphs: A006820 (connected), A033483 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7).

Programs

Formula

Euler transform of A006820. - Martin Fuller, Dec 04 2006

Extensions

a(16) from Axel Kohnert (kohnert(AT)uni-bayreuth.de), Jul 24 2003
a(17)-a(19) from Jason Kimberley, Sep 12 2009
a(20)-a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010
a(22) from Jason Kimberley, Oct 15 2011
a(22) corrected and a(23)-a(28) from Andrew Howroyd, Mar 08 2020

A144958 Number of unlabeled acyclic graphs covering n vertices.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 10, 17, 39, 77, 176, 381, 891, 2057, 4941, 11915, 29391, 73058, 184236, 468330, 1202349, 3108760, 8097518, 21218776, 55925742, 148146312, 394300662, 1053929982, 2828250002, 7617271738, 20584886435, 55802753243
Offset: 0

Views

Author

Washington Bomfim, Sep 27 2008

Keywords

Comments

a(n) is the number of forests with n unlabeled nodes without isolated vertices. This follows from the fact that for n>0 A005195(n-1) counts the forests with one or more isolated nodes.
The labeled version is A105784. The connected case is A000055. This is the covering case of A005195. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 4 forests:
  {}    .    {12}    {13,23}    {12,34}       {12,35,45}
                                {13,24,34}    {13,24,35,45}
                                {14,24,34}    {14,25,35,45}
                                              {15,25,35,45}
(End)
		

Crossrefs

The connected case is A000055.
This is the covering case of A005195, labeled A001858.
The labeled version is A105784.
For triangles instead of cycles we have A372169, non-covering A006785.
Unique cycle: A372191 (lab A372195), non-covering A236570 (lab A372193).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Union[Union[brute/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==0&]]]],{n,0,5}] (* Gus Wiseman, Apr 29 2024 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), v=EulerT(Vec(t - t^2/2 + subst(t,x,x^2)/2))); concat([1,0], vector(#v-1, i, v[i+1]-v[i]))} \\ Andrew Howroyd, Aug 01 2024

Formula

a(n) = A005195(n) - A005195(n-1).

Extensions

Name changed and 1 prepended by Gus Wiseman, Apr 29 2024.

A033483 Number of disconnected 4-valent (or quartic) graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 378, 2026, 13351, 104595, 930586, 9124662, 96699987, 1095469608, 13175272208, 167460699184, 2241578965849, 31510542635443, 464047929509794, 7143991172244290, 114749135506381940, 1919658575933845129, 33393712487076999918, 603152722419661386031
Offset: 0

Views

Author

Ronald C. Read

Keywords

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

4-regular simple graphs: A006820 (connected), this sequence (disconnected), A033301 (not necessarily connected). - Jason Kimberley, Jan 08 2011
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), this sequence (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).
Disconnected 4-regular simple graphs with girth at least g: this sequence (g=3), A185244 (g=4), A185245 (g=5), A185246 (g=6).

Programs

Formula

a(n) = A033301(n) - A006820(n) = Euler_transformation(A006820) - A006820.
a(n) = A068933(n, 4). - Jason Kimberley, Sep 27 2009 and Jan 08 2011

Extensions

Terms a(16)-a(18) from Martin Fuller, Dec 04 2006
Terms a(19)-a(26) from Jason Kimberley, Sep 27 2009 and Dec 30 2010
Terms a(27)-a(33), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020
Showing 1-10 of 60 results. Next