cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 240 results. Next

A157904 INVERT transform of A000055.

Original entry on oeis.org

1, 2, 4, 8, 17, 36, 78, 170, 375, 833, 1870, 4229, 9654, 22223, 51622, 120961, 286029, 682398, 1642821, 3990231, 9777678, 24166327, 60233185, 151350709, 383287499, 977918150, 2512805727, 6500178867, 16921248231, 44310852884, 116678914575
Offset: 0

Views

Author

Gary W. Adamson, Mar 08 2009

Keywords

Comments

Note that the correct INVERT transform of A000055 (recognizing the offsets) would be 1, 1, 2, 4, 9, 20, 46, 106, 248, 583, 1386,... - R. J. Mathar, Sep 20 2020

Examples

			a(3) = 8 = (1, 1, 1) dot (1, 2, 4) + 1 = 7 + 1 = 8; where the operation uses ascending terms of A000055: (1, 1, 1, 1, 2, 3, 6, 11,...) and an equal number of ongoing descending terms of A157904. Take the dot product and add to the next term of A000055. a(4) = 17 = (1, 1, 1, 1) dot (1, 2, 4, 8) + 2 = 15 + 2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; local d, j; if n<=1 then n else (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1) fi end: t:= proc(n) option remember; local k; `if`(n=0, 1, b(n)- (add(b(k) *b(n-k), k=1..n-1) -`if`(type(n, odd), 0, b(n/2)))/2) end: a:= proc(n) option remember; local i; if n<=0 then 1 else add(t(i)*a(n-i-1),i=0..n) fi end: seq(a(n), n=0..35);  # Alois P. Heinz, Mar 31 2009
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d b[d], {d, Divisors[j]}] b[n - j], {j, 1, n - 1}]/(n - 1)];
    t[n_] := t[n] = If[n == 0, 1, b[n] - (Sum[b[k] b[n - k], {k, 1, n - 1}] - If[OddQ[n], 0, b[n/2]])/2];
    a[n_] := a[n] = If[n <= 0, 1, Sum[t[i] a[n - i - 1], {i, 0, n}]];
    a /@ Range[0, 30] (* Jean-François Alcover, Sep 22 2020, after Alois P. Heinz *)

Formula

INVERT transform of A000055: (1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106,...).

Extensions

More terms from Alois P. Heinz, Mar 31 2009

A052471 Number of noncaterpillar trees on n nodes (A000055-A005418).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 11, 34, 99, 279, 773, 2103, 5661, 15160, 40373, 107355, 285059, 757273, 2013177, 5361100, 14303274, 38250297, 102538714, 275597098, 742674804, 2006661720, 5436008057, 14763754746, 40196603110, 109703958381, 300091975184, 822705857129
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<=1, n,
          (add(add(d*b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1))
        end:
    a:= n-> b(n) -(add(b(k) *b(n-k), k=0..n)-`if`(irem(n, 2)=0,
            b(n/2), 0))/2 -ceil(2^(n-4) + 2^(iquo(n-2, 2)-1)):
    seq(a(n), n=1..40); # Alois P. Heinz, May 18 2013
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n-1}])/(n-1)]; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[ Mod[n, 2] == 0, b[n/2], 0])/2 - Ceiling[2^(n-4) + 2^(Quotient[n-2, 2] - 1)]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)

Extensions

a(14) and up from Eric W. Weisstein, Jul 17 2004.

A157905 Triangle read by rows, T(n,k) = A000055(n-k) * (A157904 * 0^(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 2, 1, 2, 4, 8, 3, 2, 2, 4, 8, 17, 6, 3, 4, 4, 8, 17, 36, 11, 6, 6, 8, 8, 17, 36, 78, 23, 11, 12, 12, 16, 17, 36, 78, 170, 47, 23, 22, 24, 24, 34, 36, 78, 170, 375, 106, 47, 46, 44, 48, 51, 72, 78, 170, 375, 833
Offset: 0

Views

Author

Gary W. Adamson, Mar 08 2009

Keywords

Comments

As a property of eigentriangles, sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
    1;
    1,   1;
    1,   1,  2;
    1,   1,  2,  4;
    2,   1,  2,  4,  8;
    3,   2,  2,  4,  8,  17;
    6,   3,  4,  4,  8,  17,  36;
   11,   6,  6,  8,  8,  17,  36,  78;
   23,  11, 12, 12, 16,  17,  36,  78, 170;
   47,  23, 22, 24, 24,  34,  36,  78, 170, 375;
  106,  47, 46, 44, 48,  51,  72,  78, 170, 375, 833;
  235, 106, 94, 92, 88, 102, 108, 156, 170, 375, 833, 1870;
  ...
Row 5 = (3, 2, 2, 4, 8, 17) = termwise products of (3, 2, 1, 1, 1, 1) and (1, 1, 2, 4, 8, 17).
		

Crossrefs

Cf. A000055 (first column), A157904 (row sums).

Programs

  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d b[d], {d, Divisors[j]}] b[n - j], {j, 1, n - 1}]/(n - 1)];
    t[n_] := t[n] = If[n == 0, 1, b[n] - (Sum[b[k] b[n - k], {k, 1, n - 1}] - If[OddQ[n], 0, b[n/2]])/2];
    u[n_] := u[n] = If[n <= 0, 1, Sum[t[i] u[n - i - 1], {i, 0, n}]];
    c[0] = 0; c[1] = 1; c[n_] := c[n] = Sum[d c[d] c[n - j], {j, 1, n - 1}, {d, Divisors[j]}]/(n - 1);
    v[0] = 1; v[n_] := c[n] - (Sum[c[k] c[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, c[n/2], 0])/2;
    T[n_, k_] := v[n - k] u[k - 1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 21 2020, after Alois P. Heinz in A000055 and A157904 *)

Formula

Triangle read by rows, T(n,k) = A000055(n-k) * (A157904 * 0^(n-k)). A000055(n-k) = an infinite lower triangular matrix with A000055 in every column: (1, 1, 1, 1, 2, 3, 6, 11, 23, ...). (A157904 * 0^(n-k)) = a matrix with A157904 as the diagonal and the rest zeros.

A336042 Numbers k such that A000055(k) is divisible by k.

Original entry on oeis.org

1, 6, 90, 1031, 1099
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 08 2020

Keywords

Comments

No other terms below 40000.

Examples

			90 is in the sequence because A000055(90) = 90*179212383627255715871103677440244414
		

Crossrefs

A006790 Exponentiation of e.g.f. for trees A000055(n-1).

Original entry on oeis.org

1, 2, 5, 15, 53, 211, 938, 4582, 24349, 139671, 858745, 5628789, 39145021, 287667582, 2226033629, 18082308403, 153770703339, 1365631349757, 12638233544989, 121640399661294, 1215438543434225, 12587691428792115
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000055.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<=1, n, add(add(d*
          b(d), d=divisors(j))*b(n-j), j=1..n-1)/(n-1))
        end:
    t:= proc(n) option remember; `if`(n=0, 1, b(n)-(add(b(k)
          *b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
        end:
    g:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1) *t(j-1) *g(n-j), j=1..n))
        end:
    a:= n-> g(n+1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 16 2015
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; t[n_] := t[n] = If[n==0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[ Mod[n, 2] == 0, b[n/2], 0])/2]; g[n_] := g[n] = If[n==0, 1, Sum[Binomial[n-1, j-1] *t[j-1]*g[n-j], {j, 1, n}]]; a[n_] := g[n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)

A083202 a(n) = gcd(A000055(n), A000055(n+1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 15, 15, 1, 2, 1, 1, 10, 10, 92, 1, 1, 2, 1, 1, 1, 1, 6, 6, 2, 2, 57, 1, 1, 15, 3, 2, 2, 2, 5, 3, 6, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 12, 69, 69, 6, 186, 30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1
Offset: 0

Views

Author

Jon Perry, Jun 01 2003

Keywords

Examples

			A000055(6)=6, A000055(7)=11, so a(6) = gcd(6,11) = 1.
		

Crossrefs

Cf. A000055.

Programs

  • PARI
    {v=[1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 4 8629, 123867, 317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890, 2 79793450, 751065460, 2023443032, 5469566585, 14830871802, 40330829030, 109972410]; for (i=1,length(v)-1,print1(gcd(v[i],v[i+1])","))}

Extensions

More terms from Alois P. Heinz, Sep 26 2011

A119528 Determinant of n X n matrix of first n^2 number of trees with n unlabeled nodes (A000055).

Original entry on oeis.org

1, 0, 7, -7288, 210319661226, -28724163065553504725184, -17273218743083166095017987886925095168489136, -3262865955763797132157936566332771517266609360571691111615623236765760
Offset: 1

Views

Author

Jonathan Vos Post, May 27 2006

Keywords

Examples

			a(3) = 7 =
|.1..1..1|
|.1..2..3|
|.6.11.23|.
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Sep 26 2011

A144520 a(n) = A000055(n) - 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 5, 10, 22, 46, 105, 234, 550, 1300, 3158, 7740, 19319, 48628, 123866, 317954, 823064, 2144504, 5623755, 14828073, 39299896, 104636889, 279793449, 751065459, 2023443031, 5469566584, 14830871801, 40330829029, 109972410220, 300628862479
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Comments

Number of free trees with n nodes, each node with degree <= n-2. - Robert A. Russell, Jan 25 2023

Crossrefs

Programs

  • Mathematica
    b[n_,i_,t_,k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,k,k]
      + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
      b[0,i_,t_,k_] = 1;
    Join[{0,0,0,0,1}, Table[m = n - 3;
      gf[x_] := 1 + Sum[b[j - 1, j - 1, m, m] x^j, {j, 1, n}];
      ci[x_] := SymmetricGroupIndex[m + 1, x] /. x[i_] -> gf[x^i];
      SeriesCoefficient[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}], n], {n,5,35}]] (* Robert A. Russell, Jan 25 2023 *)

Formula

a(n) = A144528(n,n-2). - Robert A. Russell, Jan 25 2023

A144527 a(n) = A000055(n) - 2.

Original entry on oeis.org

0, 1, 4, 9, 21, 45, 104, 233, 549, 1299, 3157, 7739, 19318, 48627, 123865, 317953, 823063, 2144503, 5623754, 14828072, 39299895, 104636888, 279793448, 751065458, 2023443030, 5469566583, 14830871800, 40330829028, 109972410219, 300628862478, 823779631719
Offset: 4

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Comments

Number of free trees with n nodes, each node with degree <= n-3. - Robert A. Russell, Jan 25 2023

Crossrefs

Programs

  • Mathematica
    b[n_,i_,t_,k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,k,k]
      + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
      b[0,i_,t_,k_] = 1;
    Join[{0, 1}, Table[m = n - 4;
      gf[x_] := 1 + Sum[b[j - 1, j - 1, m, m] x^j, {j, 1, n}];
      ci[x_] := SymmetricGroupIndex[m + 1, x] /. x[i_] -> gf[x^i];
      SeriesCoefficient[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}], n], {n,6,35}]] (* Robert A. Russell, Jan 25 2023 *)

Formula

a(n) = A144528(n,n-3). - Robert A. Russell, Jan 25 2023

A212809 Decimal expansion of radius of convergence of g.f. for unlabeled trees (A000055).

Original entry on oeis.org

3, 3, 8, 3, 2, 1, 8, 5, 6, 8, 9, 9, 2, 0, 7, 6, 9, 5, 1, 9, 6, 1, 1, 2, 6, 2, 5, 7, 1, 7, 0, 1, 7, 0, 5, 3, 1, 8, 3, 7, 7, 4, 6, 0, 7, 5, 3, 2, 9, 6, 7, 7, 9, 5, 5, 7, 2, 3, 0, 3, 7, 7, 6, 2, 5, 7, 6, 6, 6, 0, 5, 0, 1, 8, 9, 6, 2, 0, 7, 6, 6, 5, 6, 3, 5, 2, 8, 7, 9, 8, 3, 6, 7, 3
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2012

Keywords

Examples

			0.338321856899208...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6, p. 296.

Crossrefs

Cf. A000055.

Programs

  • Mathematica
    digits = 95; max = 200;
    s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n - k, k]];
    a[1] = 1;
    a[n_] := a[n] = Sum[a[k]*s[n - 1, k]*k, {k, 1, n - 1}]/(n - 1);
    A[x_] := Sum[a[k]*x^k, {k, 0, max}];
    eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}];
    r = 1/c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5];
    RealDigits[r, 10, digits] // First (* Jean-François Alcover, Aug 10 2016 *)

Formula

Equals 1/A051491. - Vaclav Kotesovec, Jul 29 2013

Extensions

More terms from Vaclav Kotesovec, Jul 29 2013
Showing 1-10 of 240 results. Next