A123408 Duplicate of A033995.
1, 2, 3, 7, 13, 35, 88, 303, 1119, 5479
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}. G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >; [A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *) nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
{a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
{a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!); Vec(serlaplace(egf)) \\ Joerg Arndt, May 04 2013
from sympy import binomial def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1)) [A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024
(* See the links section. *)
nn = 20; a = Sum[Sum[Binomial[n, k] 2^(k (n - k)), {k, 0, n}] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[a^(1/2), {x, 0, nn}], x] (* Geoffrey Critzer, Jan 15 2012 *)
N=18; x='x+O('x^N); Vec(serlaplace(sqrt(sum(n=0, N, exp(2^n*x)*x^n/n!)))) \\ Gheorghe Coserea, Nov 13 2017
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 6, 3, 1; 1, 12, 16, 4, 1; 1, 34, 84, 31, 5, 1; 1, 87, 579, 318, 52, 6, 1; 1, 302, 5721, 5366, 867, 81, 7, 1; 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1; 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1; ...
# prints triangle with a leading zero in each row for n in range(1, 8) : st = [0 for j in range(n+1)] G = graphs(n) for g in G : st[ g.chromatic_number() ] += 1 print(st) # Joerg Arndt, Oct 13 2016
A005142 = Import["https://oeis.org/A005142/b005142.txt", "Table"][[All, 2]]; etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[A005142[[# + 1]]&][#] - 1&; Array[a, 23] (* Jean-François Alcover, Sep 03 2019 *)
Comments