cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A123408 Duplicate of A033995.

Original entry on oeis.org

1, 2, 3, 7, 13, 35, 88, 303, 1119, 5479
Offset: 1

Views

Author

Keywords

A047863 Number of labeled graphs with 2-colored nodes where black nodes are only connected to white nodes and vice versa.

Original entry on oeis.org

1, 2, 6, 26, 162, 1442, 18306, 330626, 8488962, 309465602, 16011372546, 1174870185986, 122233833963522, 18023122242478082, 3765668654914699266, 1114515608405262434306, 467221312005126294077442, 277362415313453291571118082, 233150477220213193598856331266
Offset: 0

Views

Author

Keywords

Comments

Row sums of A111636. - Peter Bala, Sep 30 2012
Column 2 of Table 2 in Read. - Peter Bala, Apr 11 2013
It appears that 5 does not divide a(n), that a(n) is even for n>0, that 3 divides a(2n) for n>0, that 7 divides a(6n+5), and that 13 divides a(12n+3). - Ralf Stephan, May 18 2013

Examples

			For n=2, {1,2 black, not connected}, {1,2 white, not connected}, {1 black, 2 white, not connected}, {1 black, 2 white, connected}, {1 white, 2 black, not connected}, {1 white, 2 black, connected}.
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 162*x^4 + 1442*x^5 + 18306*x^6 + ...
		

References

  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 79, Eq. 3.11.2.

Crossrefs

Column k=2 of A322280.
Cf. A135079 (variant).

Programs

  • Magma
    A047863:= func< n | (&+[Binomial(n,k)*2^(k*(n-k)): k in [0..n]]) >;
    [A047863(n): n in [0..40]]; // G. C. Greubel, Nov 03 2024
    
  • Mathematica
    Table[Sum[Binomial[n,k]2^(k(n-k)),{k,0,n}],{n,0,20}] (* Harvey P. Dale, May 09 2012 *)
    nmax = 20; CoefficientList[Series[Sum[E^(2^k*x)*x^k/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 05 2019 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,exp(2^k*x +x*O(x^n))*x^k/k!),n)} \\ Paul D. Hanna, Nov 27 2007
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Mar 08 2008
    
  • PARI
    N=66; x='x+O('x^N); egf = sum(n=0, N, exp(2^n*x)*x^n/n!);
    Vec(serlaplace(egf))  \\ Joerg Arndt, May 04 2013
    
  • Python
    from sympy import binomial
    def a(n): return sum([binomial(n, k)*2**(k*(n - k)) for k in range(n + 1)]) # Indranil Ghosh, Jun 03 2017
    
  • SageMath
    def A047863(n): return sum(binomial(n,k)*2^(k*(n-k)) for k in range(n+1))
    [A047863(n) for n in range(41)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(k*(n-k)).
a(n) = 4 * A000683(n) + 2. - Vladeta Jovovic, Feb 02 2000
E.g.f.: Sum_{n>=0} exp(2^n*x)*x^n/n!. - Paul D. Hanna, Nov 27 2007
O.g.f.: Sum_{n>=0} x^n/(1 - 2^n*x)^(n+1). - Paul D. Hanna, Mar 08 2008
From Peter Bala, Apr 11 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function is E(x)^2 = 1 + 2*x + 6*x^2/(2!*2) + 26*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Stanley). For other examples see A191371 (k = 3) and A223887 (k = 4).
If A(x) = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + ... denotes the e.g.f. for this sequence then sqrt(A(x)) = 1 + x + 2*x^2/2! + 7*x^3/3! + ... is the e.g.f. for A047864, which counts labeled 2-colorable graphs. (End)
a(n) ~ c * 2^(n^2/4+n+1/2)/sqrt(Pi*n), where c = Sum_{k = -infinity..infinity} 2^(-k^2) = EllipticTheta[3, 0, 1/2] = 2.128936827211877... if n is even and c = Sum_{k = -infinity..infinity} 2^(-(k+1/2)^2) = EllipticTheta[2, 0, 1/2] = 2.12893125051302... if n is odd. - Vaclav Kotesovec, Jun 24 2013

Extensions

Better description from Christian G. Bower, Dec 15 1999

A005142 Number of connected bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 17, 44, 182, 730, 4032, 25598, 212780, 2241730, 31193324, 575252112, 14218209962, 472740425319, 21208887576786, 1286099113807999, 105567921675718772, 11743905783670560579, 1772771666309380358809, 363526952035325887859823, 101386021137641794979558045
Offset: 0

Views

Author

Keywords

Comments

Also, the number of unlabeled connected bicolored graphs having n nodes; the color classes may be interchanged. - Robert W. Robinson
Also, for n>1, number of connected triangle-free graphs on n nodes with chromatic number 2. - Keith M. Briggs, Mar 21 2006 (cf. A116079).
Also, first diagonal of triangle in A126736.
EULER transform of [1, 1, 1, 3, 5, 17, ...] is A033995 [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* See the links section. *)

Formula

a(2*n+1) = A318870(2*n+1)/2, a(2*n) = (a(n) + A318869(n) + A318870(2*n) - A318870(n))/2. - Andrew Howroyd, Sep 04 2018

Extensions

More terms from Ronald C. Read.
a(0)=1 prepended by Max Alekseyev, Jun 24 2013
Terms a(21) and beyond from Andrew Howroyd, Sep 04 2018

A006785 Number of triangle-free graphs on n vertices.

Original entry on oeis.org

1, 2, 3, 7, 14, 38, 107, 410, 1897, 12172, 105071, 1262180, 20797002, 467871369, 14232552452, 581460254001, 31720840164950
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A024607.
Row sums of A283417.

Formula

Erdős, Kleitman, & Rothschild prove that a(n) = 2^(n^2/4 + o(n^2)) and a(n) = (1 + o(1/n))*A033995(n). - Charles R Greathouse IV, Feb 01 2018

Extensions

2 more terms (from the McKay paper) from Vladeta Jovovic, May 17 2008
2 more terms from Brendan McKay, Jan 12 2013

A047864 Number of labeled bipartite graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 41, 376, 5177, 103237, 2922446, 116011231, 6433447397, 498234407452, 54007795331921, 8213123246906761, 1756336596363006842, 528975889250504033527, 224688018516023267969441, 134708289561117007261966816
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 406.
  • H. S. Wilf, Generatingfunctionology, Academic Press, NY, 1990, p. 80, Eq. 3.11.5.

Crossrefs

Row sums of A117279.
The unlabeled version is A033995.

Programs

  • Mathematica
    nn = 20; a = Sum[Sum[Binomial[n, k] 2^(k (n - k)), {k, 0, n}] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[a^(1/2), {x, 0, nn}], x]  (* Geoffrey Critzer, Jan 15 2012 *)
  • PARI
    N=18; x='x+O('x^N); Vec(serlaplace(sqrt(sum(n=0, N, exp(2^n*x)*x^n/n!)))) \\ Gheorghe Coserea, Nov 13 2017

Formula

E.g.f.: sqrt( e.g.f. for A047863 ).

A084268 Triangle read by rows: T(n,k) is the number of simple graphs on n unlabeled nodes having chromatic number k, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 12, 16, 4, 1, 1, 34, 84, 31, 5, 1, 1, 87, 579, 318, 52, 6, 1, 1, 302, 5721, 5366, 867, 81, 7, 1, 1, 1118, 87381, 155291, 28722, 2028, 118, 8, 1, 1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1, 1, 32302, 78315231, 675054876, 250530482, 14662562, 393963, 8214, 222, 10, 1
Offset: 1

Views

Author

Eric W. Weisstein, May 24 2003

Keywords

Comments

T(n,1) = T(n,n) = 1 (here we count the empty graph and the complete graph). T(n,n-1) = n-1 (here we count the graphs with clique number equal to n-1). - Geoffrey Critzer, Oct 12 2016
Row sums give A000088. - Joerg Arndt, Oct 13 2016

Examples

			Triangle begins:
  1;
  1,    1;
  1,    2,       1;
  1,    6,       3,       1;
  1,   12,      16,       4,       1;
  1,   34,      84,      31,       5,      1;
  1,   87,     579,     318,      52,      6,    1;
  1,  302,    5721,    5366,     867,     81,    7,   1;
  1, 1118,   87381,  155291,   28722,   2028,  118,   8, 1;
  1, 5478, 2104349, 7855628, 1919895, 115391, 4251, 165, 9, 1;
  ...
		

Crossrefs

Partial row sums include A033995, A076315, A076316, A076317, A076318, A076319, A076320, A076321.
Row sums are A000088.
Cf. A084269 (connected), A115597 (essentially the same sequence).

Programs

  • Sage
    # prints triangle with a leading zero in each row
    for n in range(1, 8) :
        st = [0 for j in range(n+1)]
        G = graphs(n)
        for g in G :
            st[ g.chromatic_number() ] += 1
        print(st)
    # Joerg Arndt, Oct 13 2016

Extensions

Offset corrected by Joerg Arndt, Oct 13 2016
a(36)-a(55) from Joerg Arndt, Oct 15 2016
a(56)-a(66) from Andrew Howroyd, Dec 02 2018

A076278 Number of 2-chromatic (i.e., chromatic number equals 2) simple graphs on n nodes.

Original entry on oeis.org

0, 1, 2, 6, 12, 34, 87, 302, 1118, 5478, 32302, 251134, 2527711, 33985852, 611846939, 14864650923, 488222721991, 21712049275197, 1308300679611468, 106897965189674290, 11852113048215107821, 1784730721403509209214, 365323537513403184463272
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Column k=2 of A084268.

Programs

  • Mathematica
    A005142 = Import["https://oeis.org/A005142/b005142.txt", "Table"][[All, 2]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    a = etr[A005142[[# + 1]]&][#] - 1&;
    Array[a, 23] (* Jean-François Alcover, Sep 03 2019 *)

Formula

a(n) = A033995(n)-1.

Extensions

More terms from Vladeta Jovovic, Jul 31 2003
Terms a(21) and beyond from Andrew Howroyd, Sep 05 2018

A076315 Number of 3-colorable (i.e., chromatic number <= 3) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 10, 29, 119, 667, 6024, 88500, 2109828, 78347534, 4383817811, 362181166439
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A033995(n) + A076279(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Brendan McKay, Jan 19 2020
a(13) from Brendan McKay, Nov 08 2022

A076316 Number of 4-colorable (i.e., chromatic number <= 4) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 33, 150, 985, 11390, 243791, 9965456, 753402410, 101344230844
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

a(n) = A076315(n) + A076280(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
a(12) from Sean A. Irvine, Apr 13 2025

A076317 Number of 5-colorable (i.e., chromatic number <= 5) simple graphs on n nodes.

Original entry on oeis.org

1, 2, 4, 11, 34, 155, 1037, 12257, 272513, 11885351, 1003932892
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Cf. A215620 (numbers of apex graphs on n vertices).

Formula

a(n) = A076316(n) + A076281(n). - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018
Showing 1-10 of 24 results. Next