cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert W. Robinson

Robert W. Robinson's wiki page.

Robert W. Robinson has authored 3 sequences.

A001072 Number of minimally 2-edge-connected non-isomorphic graphs with n nodes.

Original entry on oeis.org

1, 1, 3, 4, 11, 23, 63, 159, 459, 1331, 4083, 12750
Offset: 3

Keywords

References

  • Calculated by Sridar K. Pootheri.

Crossrefs

Cf. A324410.

Extensions

a(11) and a(12) added using tinygraph by Falk Hüffner, Jan 20 2016
a(13) and a(14) added by Jens M. Schmidt, Feb 27 2019

A007152 Evolutionary trees of magnitude n.

Original entry on oeis.org

1, 1, 4, 28, 301, 4466, 84974, 1974904, 54233540, 1718280152, 61695193880, 2475688513024, 109797950475448, 5333253012414224, 281576039542538368, 16055279332196218624, 983264280857581866112, 64369946360185677026048, 4485859513184032011682304, 331558482325457407154881024
Offset: 1

Keywords

References

  • L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007151.

Programs

  • Maple
    Q  := proc(n)
        option remember ;
        if n <= 1 then
            0;
        else
            A007151(n)-A007151(n-1) +(n-1)*procname(n-1) ; # eq (3.5)
            %/2 ;
        end if;
    end proc:
    A007152 := proc(n)
        if n = 1 then
            1;
        else
            A007151(n-1)+Q(n-1) ; # eq (3.9)
        end if ;
    end proc:
    seq(A007152(n),n=1..20 ); # R. J. Mathar, Mar 19 2018
  • Mathematica
    m = 20;
    A007151 = Rest[Range[0, m]! CoefficientList[ InverseSeries[ Series[(2x - E^x + 1)/(x + 1), {x, 0, m}], x], x]];
    Q[n_] := Q[n] = If[n <= 1, 0, (1/2)(-A007151[[n - 1]] + A007151[[n]] + (n - 1) Q[n - 1])];
    a[n_] := If[n == 1, 1, A007151[[n - 1]] + Q[n - 1]];
    Array[a, m] (* Jean-François Alcover, Mar 30 2020, from Maple *)

A007151 Number of planted evolutionary trees of magnitude n.

Original entry on oeis.org

1, 3, 19, 198, 2906, 55018, 1275030, 34947664, 1105740320, 39661089864, 1590232358584, 70482038536880, 3421732373367504, 180574681050278960, 10292371442183694832, 630125771602386523392, 41239934114630205030656
Offset: 1

Keywords

Comments

Also number of labeled rooted trees with n generators. (A generator is a leaf or a node with just one child.) - Christian G. Bower, Jun 07 2005

References

  • L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007151 := proc(n)
        local k,j,i,m ,a;
        if n =1 then
            1;
        else
            a := 0 ;
            for k from 1 to n-1 do
            for j from 1 to k do
            for i from 0 to n-1 do
            for m from 0 to j do
                 a := a+(n+k-1)! /(k-j)! *binomial(j+i-1,j-1) *2^m *(-1)^(m+i) *combinat[stirling2](n-m+j-i-1,j-m) / m! /(n-m+j-i-1)! ;
            end do:
            end do:
            end do:
            end do:
            a ;
        end if;
    end proc:
    seq(A007151(n),n=1..10) ; # R. J. Mathar, Mar 19 2018
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[(1 - E^x + 2*x)/(1 + x),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=if n=1 then 1 else (sum((n+k-1)!*sum(1/((k-j)!)*sum(binomial(j+i-1,j-1)*sum((2^m*(-1)^(m+i)*stirling2(n-m+j-i-1,j-m))/(m!*(n-m+j-i-1)!),m,0,j),i,0,n-1),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Aug 07 2012 */
    
  • PARI
    for(n=1,20, print1(if(n==1,1,sum(k=1,n-1, (n+k-1)!*sum(j=1,k, (1/(k-j)!)* sum(i=0,n-1, binomial(j+i-1,j-1)*sum(m=0,j, 2^m*(-1)^(m+i)* stirling(n-m+j-i-1,j-m,2)/(m!*(n-m+j-i-1)!)))))), ", ")) \\ G. C. Greubel, Nov 26 2017

Formula

E.g.f. satisfies (2-x)*A(x) = x - 1 + exp(A(x)). - Christian G. Bower, Jun 07 2005
a(n) = Sum_{k=1..(n-1)} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..(n-1)} binomial(j+i-1,j-1)*Sum_{m=0..j} 2^m*(-1)^(m+i)*Stirling2(n-m+j-i-1,j-m)/(m!*(n-m+j-i-1)!), n>1, a(1)=1. - Vladimir Kruchinin, Aug 07 2012
a(n) ~ sqrt(LambertW(1)+1) * n^(n-1) * (LambertW(1))^n / (exp(n) * (2*LambertW(1)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014