cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108521 Number of rooted trees with n generators.

Original entry on oeis.org

1, 2, 5, 16, 53, 194, 730, 2868, 11526, 47370, 197786, 837467, 3585696, 15501423, 67563442, 296579626, 1309973823, 5817855174, 25964218471, 116379947718, 523699384013, 2364967753113, 10714396241046, 48684193997623
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Cf. A000081, A000669, A007151, A108522 - A108529, A335342 (free trees).

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1+a[n-1]+Total[Product[Binomial[a[i]-1+Count[#,i], Count[#,i]], {i, DeleteCases[DeleteDuplicates[#],1]}]&/@ IntegerPartitions[n,{2,n-1}]]; Table[a[n],{n,24}] (* Robert A. Russell, Jun 02 2020 *)
    a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #Robert A. Russell, Jun 04 2020 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v,[0]))[n])); v} \\ Andrew Howroyd, Aug 31 2018

Formula

G.f.: satisfies (2-x)*A(x) = x - 1 + EULER(A(x)).

A108522 Number of increasing rooted trees with n generators.

Original entry on oeis.org

1, 2, 9, 70, 771, 10948, 190205, 3907494, 92654059, 2490459468, 74827519077, 2485153213814, 90403692195179, 3574835773247140, 152675377606343901, 7003761877546096278, 343454890456254782203, 17929588055863943650988
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x);for(i=1,n,A=intformal((1+A)/(2-exp(A+x*O(x^n)))) );n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", ")) \\ Paul D. Hanna, Mar 29 2014

Formula

E.g.f. satisfies: 2*A(x) = x - 1 + exp(A(x)) + Integral A(x) dx. - corrected by Vaclav Kotesovec and Paul D. Hanna, Mar 29 2014
From Paul D. Hanna, Mar 29 2014: (Start)
E.g.f. satisfies: A(x) = A'(x)*(2 - exp(A(x))) - 1.
E.g.f. satisfies: A'(x) = (1 + A(x))/(2 - exp(A(x))).
(End)
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.3160173586544089316502903103262192204293322854083... and c = 0.51723490785798357350192800634304... - Vaclav Kotesovec, Mar 29 2014

A007152 Evolutionary trees of magnitude n.

Original entry on oeis.org

1, 1, 4, 28, 301, 4466, 84974, 1974904, 54233540, 1718280152, 61695193880, 2475688513024, 109797950475448, 5333253012414224, 281576039542538368, 16055279332196218624, 983264280857581866112, 64369946360185677026048, 4485859513184032011682304, 331558482325457407154881024
Offset: 1

Views

Author

Keywords

References

  • L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007151.

Programs

  • Maple
    Q  := proc(n)
        option remember ;
        if n <= 1 then
            0;
        else
            A007151(n)-A007151(n-1) +(n-1)*procname(n-1) ; # eq (3.5)
            %/2 ;
        end if;
    end proc:
    A007152 := proc(n)
        if n = 1 then
            1;
        else
            A007151(n-1)+Q(n-1) ; # eq (3.9)
        end if ;
    end proc:
    seq(A007152(n),n=1..20 ); # R. J. Mathar, Mar 19 2018
  • Mathematica
    m = 20;
    A007151 = Rest[Range[0, m]! CoefficientList[ InverseSeries[ Series[(2x - E^x + 1)/(x + 1), {x, 0, m}], x], x]];
    Q[n_] := Q[n] = If[n <= 1, 0, (1/2)(-A007151[[n - 1]] + A007151[[n]] + (n - 1) Q[n - 1])];
    a[n_] := If[n == 1, 1, A007151[[n - 1]] + Q[n - 1]];
    Array[a, m] (* Jean-François Alcover, Mar 30 2020, from Maple *)
Showing 1-3 of 3 results.