cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A108529 Number of asymmetric mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 1, 2, 5, 16, 51, 177, 621, 2246, 8245, 30783, 116257, 443945, 1710255, 6640939, 25961690, 102105115, 403701135, 1603721999, 6397931901, 25621989760, 102965680728, 415091909292, 1678226164646, 6803121058354, 27645628327636
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
Here CHK(A(x)) = 1 - Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)), i.e., the constant 1 is included in the definition of the CHK transform. For other sequences that involve the CHK transform, the 1 is sometimes dropped; e.g., see sequence A032171. We have CHK(A(x)) = x + x^2 + 3*x^3 + 8*x^4 + 27*x^5 + 86*x^6 + 303*x^7 + 1065*x^8 + 3871*x^9 + ... - Petros Hadjicostas, Dec 05 2017

Crossrefs

Programs

  • PARI
    CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=x); for(n=2, n, p += x^n*polcoef(x*p + CHK(p, n), n)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 31 2018

Formula

G.f. satisfies: (2-x)*A(x) = x - 1 + CHK(A(x)).
From Petros Hadjicostas, Dec 05 2017: (Start)
a(n) = (1/2)*(a(n-1) + (1/n)*Sum_{d|n} mu(d)*c(n/d)) for n>=2, where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) and a(1) = c(1) = 1.
The g.f. satisfies (2-x)*A(x) = x - Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)). (This is just a rephrasing of C. Bower's equation above.)
The auxiliary sequence (c(n): n>=1} has g.f. C(x) = Sum_{n>=1} c(n)*x^n = x*(dA/dx)/(1-A(x)) = x + 3*x^2 + 10*x^3 + 35*x^4 + 136*x^5 + 528*x^6 + 2122*x^7 + ...
(End)

A108524 Number of ordered rooted trees with n generators.

Original entry on oeis.org

1, 2, 7, 32, 166, 926, 5419, 32816, 203902, 1292612, 8327254, 54358280, 358769152, 2390130038, 16051344307, 108548774240, 738563388214, 5052324028508, 34727816264050, 239733805643552, 1661351898336676, 11553558997057772, 80603609263563262, 563972937201926432
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
The Hankel transform of this sequence is 3^C(n+1,2). The Hankel transform of this sequence with 1 prepended (1,1,2,7,...) is 3^C(n,2). - Paul Barry, Jan 26 2011
a(n) is the number of Schroder paths of semilength n-1 in which the (2,0)-steps that are not on the horizontal axis come in 2 colors. Example: a(3)=7 because we have HH, UDUD, UUDD, HUD, UDH, UBD, and URD, where U=(1,1), H=(2,0), D=(1,-1), while B and R are, respectively, blue and red (2,0)-steps. - Emeric Deutsch, May 02 2011
Also the compositional inverse of A327767. - Peter Luschny, Oct 08 2022

Crossrefs

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(24, n -> [1, -2][irem(n-1, 2) + 1]); # Peter Luschny, Oct 08 2022
  • Mathematica
    Rest[CoefficientList[Series[(Sqrt[4*x^2-8*x+1]-1)/(2*x-4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 18 2012 *)
  • Maxima
    a(n):=sum((i*binomial(n+1,i)*sum((-1)^j*2^(n-j)*binomial(n,j)*binomial(2*n-j-i-1,n-1),j,0,n-i))/2^i,i,1,n+1)/(n*(n+1)); /* Vladimir Kruchinin, May 10 2011 */

Formula

G.f.: (sqrt(4*x^2-8*x+1) - 1)/(2*x-4).
G.f.: 1/(1-x-x/(1-2x-x/(1-2x-x/(1-2x-x/(1-2x-x/(1-... (continued fraction). - Paul Barry, Feb 10 2009
a(n) = sum(i=1..n+1, (i*C(n+1,i)*sum(j=0..n-i, (-1)^j*2^(n-j)*C(n,j)*C(2*n-j-i-1,n-1)))/2^i)/(n*(n+1)). - Vladimir Kruchinin, May 10 2011
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is upper left term in the following infinite square production matrix:
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
3, 3, 1, 1, 0, ...
9, 9, 3, 1, 1, ...
...
where columns are (1, 1, 3, 9, 27, 81, ...) prefaced with (0,0,1,2,3,...) zeros. (End)
Conjecture: 2*n*a(n) +(24-17*n)*a(n-1) +4*(4*n-9)*a(n-2) +4*(3-n)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
G.f.: A(x)=(sqrt(4*x^2-8*x+1) - 1)/x/(2*x-4) = 1/(G(0)-x); G(k) = 1 + 2*x - 3*x/G(k+1); (continued fraction, 1-step ). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ 3^(1/4)*(3^(3/2)-5)*(4+2*sqrt(3))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
From Peter Bala, Mar 13 2015: (Start)
The o.g.f. A(x) satisfies the differential equation (2 - 17*x + 16*x^2 - 4*x^3)A'(x) + (7 - 4*x)*A(x) = 2 - 2*x. Mathar's conjectural recurrence above follows from this.
The o.g.f. A(x) is the series reversion of the rational function x*(1 - 2*x)/(1 - x^2). (End)

A108522 Number of increasing rooted trees with n generators.

Original entry on oeis.org

1, 2, 9, 70, 771, 10948, 190205, 3907494, 92654059, 2490459468, 74827519077, 2485153213814, 90403692195179, 3574835773247140, 152675377606343901, 7003761877546096278, 343454890456254782203, 17929588055863943650988
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x);for(i=1,n,A=intformal((1+A)/(2-exp(A+x*O(x^n)))) );n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", ")) \\ Paul D. Hanna, Mar 29 2014

Formula

E.g.f. satisfies: 2*A(x) = x - 1 + exp(A(x)) + Integral A(x) dx. - corrected by Vaclav Kotesovec and Paul D. Hanna, Mar 29 2014
From Paul D. Hanna, Mar 29 2014: (Start)
E.g.f. satisfies: A(x) = A'(x)*(2 - exp(A(x))) - 1.
E.g.f. satisfies: A'(x) = (1 + A(x))/(2 - exp(A(x))).
(End)
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.3160173586544089316502903103262192204293322854083... and c = 0.51723490785798357350192800634304... - Vaclav Kotesovec, Mar 29 2014

A007151 Number of planted evolutionary trees of magnitude n.

Original entry on oeis.org

1, 3, 19, 198, 2906, 55018, 1275030, 34947664, 1105740320, 39661089864, 1590232358584, 70482038536880, 3421732373367504, 180574681050278960, 10292371442183694832, 630125771602386523392, 41239934114630205030656
Offset: 1

Views

Author

Keywords

Comments

Also number of labeled rooted trees with n generators. (A generator is a leaf or a node with just one child.) - Christian G. Bower, Jun 07 2005

References

  • L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007151 := proc(n)
        local k,j,i,m ,a;
        if n =1 then
            1;
        else
            a := 0 ;
            for k from 1 to n-1 do
            for j from 1 to k do
            for i from 0 to n-1 do
            for m from 0 to j do
                 a := a+(n+k-1)! /(k-j)! *binomial(j+i-1,j-1) *2^m *(-1)^(m+i) *combinat[stirling2](n-m+j-i-1,j-m) / m! /(n-m+j-i-1)! ;
            end do:
            end do:
            end do:
            end do:
            a ;
        end if;
    end proc:
    seq(A007151(n),n=1..10) ; # R. J. Mathar, Mar 19 2018
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[(1 - E^x + 2*x)/(1 + x),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=if n=1 then 1 else (sum((n+k-1)!*sum(1/((k-j)!)*sum(binomial(j+i-1,j-1)*sum((2^m*(-1)^(m+i)*stirling2(n-m+j-i-1,j-m))/(m!*(n-m+j-i-1)!),m,0,j),i,0,n-1),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Aug 07 2012 */
    
  • PARI
    for(n=1,20, print1(if(n==1,1,sum(k=1,n-1, (n+k-1)!*sum(j=1,k, (1/(k-j)!)* sum(i=0,n-1, binomial(j+i-1,j-1)*sum(m=0,j, 2^m*(-1)^(m+i)* stirling(n-m+j-i-1,j-m,2)/(m!*(n-m+j-i-1)!)))))), ", ")) \\ G. C. Greubel, Nov 26 2017

Formula

E.g.f. satisfies (2-x)*A(x) = x - 1 + exp(A(x)). - Christian G. Bower, Jun 07 2005
a(n) = Sum_{k=1..(n-1)} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..(n-1)} binomial(j+i-1,j-1)*Sum_{m=0..j} 2^m*(-1)^(m+i)*Stirling2(n-m+j-i-1,j-m)/(m!*(n-m+j-i-1)!), n>1, a(1)=1. - Vladimir Kruchinin, Aug 07 2012
a(n) ~ sqrt(LambertW(1)+1) * n^(n-1) * (LambertW(1))^n / (exp(n) * (2*LambertW(1)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014

A108525 Number of increasing ordered rooted trees with n generators.

Original entry on oeis.org

1, 3, 27, 429, 9609, 277107, 9772803, 407452221, 19604840481, 1069202914083, 65177482634667, 4391636680582029, 324102772814580729, 25999541378465556627, 2252597527900572815763, 209625760563134613131421
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.
In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[(Log[1-x]+7*Log[1+x]+2/(x-1))/4+1/2,{x,0,20}],x],x]*Range[0,20]!] (* Vaclav Kotesovec, Feb 20 2014 *)
  • PARI
    {a(n)=local(A=x); for(i=1, n, A=intformal((A-1)^2 * (1+A) /(1 - 4*A + 2*A^2)+O(x^n))); n!*polcoeff(A, n)};
    for(n=1, 20, print1(a(n), ", ")); /* Vaclav Kotesovec, Feb 20 2014 */

Formula

E.g.f. satisfies: A(x) = -1 + 2*A'(x) - A'(x)/(1-A(x))^2, corrected by Vaclav Kotesovec and Paul D. Hanna, Feb 20 2014
A(x) = Series_Reversion( (log(1-x) + 7*log(1+x) + 2/(x-1))/4 + 1/2). - Vaclav Kotesovec, Feb 20 2014
a(n) ~ sqrt(4-sqrt(2)) * 2^(3*n-13/4) * n^(n-1) / (exp(n) * (4-4*sqrt(2)-log(2)+14*log(2-1/sqrt(2)))^(n-1/2)). - Vaclav Kotesovec, Feb 20 2014

A108523 Number of rooted identity trees with n generators.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 77, 226, 685, 2112, 6618, 20996, 67337, 217884, 710571, 2332958, 7705429, 25584035, 85346018, 285908169, 961440343, 3244259406, 10981797187, 37280278698, 126890974820, 432950169885, 1480542159038, 5073504809660
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + WeighT(concat(v,[0]))[n])); v}  \\ Andrew Howroyd, Aug 31 2018

Formula

G.f. satisfies (2-x)*A(x) = x - 1 + WEIGH(A(x)).

A108527 Number of labeled mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 3, 20, 229, 3764, 80383, 2107412, 65436033, 2347211812, 95492023811, 4344109422388, 218499395486909, 12039757564700644, 721239945304498215, 46669064731537444820, 3243864647191662324601, 241046155271316751794596
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • Mathematica
    nmax=20; c[0]=0; A[x_]:=Sum[c[k]*x^k/k!,{k,0,nmax}]; Array[c,nmax]/.Solve[Rest[CoefficientList[Series[x-1-Log[1-A[x]]-(2-x)*A[x],{x,0,nmax}],x]]==0][[1]] (* Vaclav Kotesovec, Mar 28 2014 *)
  • PARI
    {a(n)=local(A=x+O(x^n)); for(i=0, n, A=intformal((1-A^2)/(1-x-2*A+x*A)+O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 28 2014

Formula

E.g.f. satisfies: (2-x)*A(x) = x - 1 - log(1-A(x)).
a(n) ~ c * n^(n-1) / (exp(n) * r^n), where r = 0.20846306198165450115960050053484328028... and c = 0.3060161306524907981116283162103879... - Vaclav Kotesovec, Mar 28 2014

A108526 Number of mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 2, 5, 16, 54, 210, 841, 3555, 15402, 68336, 308206, 1410175, 6525500, 30492934, 143669529, 681781043, 3255653089, 15632422715, 75429279214, 365556955492, 1778608580060, 8684658137204, 42543288504844, 209022441144144
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

A generator is a leaf or a node with just one child.

Crossrefs

Programs

  • PARI
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=x); for(n=2, n, p += x^n*polcoef(x*p + CIK(p, n), n)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 31 2018

Formula

G.f. satisfies (2-x)*A(x) = x - 1 + CIK(A(x)).

A108528 Number of increasing mobiles (cycle rooted trees) with n generators.

Original entry on oeis.org

1, 2, 10, 92, 1216, 20792, 435520, 10793792, 308874016, 10021509632, 363509706880, 14576530558592, 640275236943616, 30573223563625472, 1576805482203235840, 87353392124392020992, 5173324070004374358016, 326160898887563325581312, 21810458629345555407462400
Offset: 1

Views

Author

Christian G. Bower, Jun 07 2005

Keywords

Comments

In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[Log[(1+x)*Sqrt[1-x^2]], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(log((1+x)*sqrt(1-x^2+O(x^(n+2))))),n)} \\ Paul D. Hanna, Sep 11 2010

Formula

E.g.f. satisfies 2*A(x) = x - 1 + A'(x) - log(1-A(x)).
From Paul D. Hanna, Sep 11 2010: (Start)
E.g.f. satisfies: (1+A(x))*sqrt(1-A(x)^2) = exp(x).
E.g.f.: A(x) = Series_Reversion[ log((1+x)*sqrt(1-x^2)) ]. (End)
a(n) ~ 2^(n-2) * sqrt(3) * n^(n-1) / (exp(n) * (log(27/16))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014

A335342 Number of free trees with exactly n nodes with fewer than three neighbors.

Original entry on oeis.org

1, 1, 2, 4, 9, 25, 70, 226, 753, 2675, 9785, 37087, 143487, 566952, 2274967, 9257906, 38113299, 158535204, 665364565, 2814924441, 11993967450, 51433198599, 221839745468, 961884808879, 4190783204515, 18339291329225
Offset: 1

Views

Author

Robert A. Russell, Jun 02 2020

Keywords

Comments

Generates and uses values from A108521, rooted trees with exactly n generators, a generator being a leaf or node with just one child.

Examples

			For n=4, we have 1) a node with four neighbors, 2) two adjacent nodes with three neighbors each, 3) two adjacent nodes with two neighbors each, and 4) two adjacent nodes, one having two neighbors and the other three neighbors.
		

Crossrefs

Cf. A108521 (rooted trees).

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1+a[n-1] + Total[Product[Binomial[a[i]-1+Count[#,i], Count[#,i]], {i, DeleteCases[DeleteDuplicates[#], 1]}] & /@ IntegerPartitions[n,{2, n-1}]]; (* A108521 *)
    b[1] = 1; b[n_] := b[n] = If[n > 2, 1, 0] + If[EvenQ[n], a[n/2] (a[n/2] + 1)/2, a[(n-1)/2] (a[(n-1)/2]+1)/2] + If[n > 3, Total[If[Max[#] <= If[EvenQ[n], n/2-1, (n-1)/2], Product[Binomial[a[i] - 1 + Count[#, i], Count[#, i]], {i, DeleteCases[DeleteDuplicates[#], 1]}], 0] & /@ IntegerPartitions[n, {3, n-1}]], 0];
    Table[b[n], {n, 40}]
    (* a[n] = A108521[n]; d[n] are coefficients of A^2(x) in g.f. *)
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #
    				
  • PARI
    \\ here S is A108521 as vector.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    S(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v, [0]))[n])); v}
    seq(n)={my(p=x*Ser(S(n))); Vec(p + (x/2-1)*p^2 + (x/2)*subst(p, x, x^2))} \\ Andrew Howroyd, Jun 06 2020

Formula

G.f.: A(x) + (x/2-1)*A^2(x) + (x/2)*A(x^2), where A(x) is the g.f. for A108521.
Showing 1-10 of 10 results.