A108529
Number of asymmetric mobiles (cycle rooted trees) with n generators.
Original entry on oeis.org
1, 1, 2, 5, 16, 51, 177, 621, 2246, 8245, 30783, 116257, 443945, 1710255, 6640939, 25961690, 102105115, 403701135, 1603721999, 6397931901, 25621989760, 102965680728, 415091909292, 1678226164646, 6803121058354, 27645628327636
Offset: 1
-
CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=x); for(n=2, n, p += x^n*polcoef(x*p + CHK(p, n), n)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 31 2018
A108524
Number of ordered rooted trees with n generators.
Original entry on oeis.org
1, 2, 7, 32, 166, 926, 5419, 32816, 203902, 1292612, 8327254, 54358280, 358769152, 2390130038, 16051344307, 108548774240, 738563388214, 5052324028508, 34727816264050, 239733805643552, 1661351898336676, 11553558997057772, 80603609263563262, 563972937201926432
Offset: 1
-
# Using function CompInv from A357588.
CompInv(24, n -> [1, -2][irem(n-1, 2) + 1]); # Peter Luschny, Oct 08 2022
-
Rest[CoefficientList[Series[(Sqrt[4*x^2-8*x+1]-1)/(2*x-4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 18 2012 *)
-
a(n):=sum((i*binomial(n+1,i)*sum((-1)^j*2^(n-j)*binomial(n,j)*binomial(2*n-j-i-1,n-1),j,0,n-i))/2^i,i,1,n+1)/(n*(n+1)); /* Vladimir Kruchinin, May 10 2011 */
A108522
Number of increasing rooted trees with n generators.
Original entry on oeis.org
1, 2, 9, 70, 771, 10948, 190205, 3907494, 92654059, 2490459468, 74827519077, 2485153213814, 90403692195179, 3574835773247140, 152675377606343901, 7003761877546096278, 343454890456254782203, 17929588055863943650988
Offset: 1
-
{a(n)=local(A=x);for(i=1,n,A=intformal((1+A)/(2-exp(A+x*O(x^n)))) );n!*polcoeff(A,n)}
for(n=1,20,print1(a(n),", ")) \\ Paul D. Hanna, Mar 29 2014
A007151
Number of planted evolutionary trees of magnitude n.
Original entry on oeis.org
1, 3, 19, 198, 2906, 55018, 1275030, 34947664, 1105740320, 39661089864, 1590232358584, 70482038536880, 3421732373367504, 180574681050278960, 10292371442183694832, 630125771602386523392, 41239934114630205030656
Offset: 1
- L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A007151 := proc(n)
local k,j,i,m ,a;
if n =1 then
1;
else
a := 0 ;
for k from 1 to n-1 do
for j from 1 to k do
for i from 0 to n-1 do
for m from 0 to j do
a := a+(n+k-1)! /(k-j)! *binomial(j+i-1,j-1) *2^m *(-1)^(m+i) *combinat[stirling2](n-m+j-i-1,j-m) / m! /(n-m+j-i-1)! ;
end do:
end do:
end do:
end do:
a ;
end if;
end proc:
seq(A007151(n),n=1..10) ; # R. J. Mathar, Mar 19 2018
-
Rest[CoefficientList[InverseSeries[Series[(1 - E^x + 2*x)/(1 + x),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
-
a(n):=if n=1 then 1 else (sum((n+k-1)!*sum(1/((k-j)!)*sum(binomial(j+i-1,j-1)*sum((2^m*(-1)^(m+i)*stirling2(n-m+j-i-1,j-m))/(m!*(n-m+j-i-1)!),m,0,j),i,0,n-1),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Aug 07 2012 */
-
for(n=1,20, print1(if(n==1,1,sum(k=1,n-1, (n+k-1)!*sum(j=1,k, (1/(k-j)!)* sum(i=0,n-1, binomial(j+i-1,j-1)*sum(m=0,j, 2^m*(-1)^(m+i)* stirling(n-m+j-i-1,j-m,2)/(m!*(n-m+j-i-1)!)))))), ", ")) \\ G. C. Greubel, Nov 26 2017
A108525
Number of increasing ordered rooted trees with n generators.
Original entry on oeis.org
1, 3, 27, 429, 9609, 277107, 9772803, 407452221, 19604840481, 1069202914083, 65177482634667, 4391636680582029, 324102772814580729, 25999541378465556627, 2252597527900572815763, 209625760563134613131421
Offset: 1
-
Rest[CoefficientList[InverseSeries[Series[(Log[1-x]+7*Log[1+x]+2/(x-1))/4+1/2,{x,0,20}],x],x]*Range[0,20]!] (* Vaclav Kotesovec, Feb 20 2014 *)
-
{a(n)=local(A=x); for(i=1, n, A=intformal((A-1)^2 * (1+A) /(1 - 4*A + 2*A^2)+O(x^n))); n!*polcoeff(A, n)};
for(n=1, 20, print1(a(n), ", ")); /* Vaclav Kotesovec, Feb 20 2014 */
A108523
Number of rooted identity trees with n generators.
Original entry on oeis.org
1, 1, 2, 4, 10, 27, 77, 226, 685, 2112, 6618, 20996, 67337, 217884, 710571, 2332958, 7705429, 25584035, 85346018, 285908169, 961440343, 3244259406, 10981797187, 37280278698, 126890974820, 432950169885, 1480542159038, 5073504809660
Offset: 1
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + WeighT(concat(v,[0]))[n])); v} \\ Andrew Howroyd, Aug 31 2018
A108527
Number of labeled mobiles (cycle rooted trees) with n generators.
Original entry on oeis.org
1, 3, 20, 229, 3764, 80383, 2107412, 65436033, 2347211812, 95492023811, 4344109422388, 218499395486909, 12039757564700644, 721239945304498215, 46669064731537444820, 3243864647191662324601, 241046155271316751794596
Offset: 1
-
nmax=20; c[0]=0; A[x_]:=Sum[c[k]*x^k/k!,{k,0,nmax}]; Array[c,nmax]/.Solve[Rest[CoefficientList[Series[x-1-Log[1-A[x]]-(2-x)*A[x],{x,0,nmax}],x]]==0][[1]] (* Vaclav Kotesovec, Mar 28 2014 *)
-
{a(n)=local(A=x+O(x^n)); for(i=0, n, A=intformal((1-A^2)/(1-x-2*A+x*A)+O(x^n))); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 28 2014
A108526
Number of mobiles (cycle rooted trees) with n generators.
Original entry on oeis.org
1, 2, 5, 16, 54, 210, 841, 3555, 15402, 68336, 308206, 1410175, 6525500, 30492934, 143669529, 681781043, 3255653089, 15632422715, 75429279214, 365556955492, 1778608580060, 8684658137204, 42543288504844, 209022441144144
Offset: 1
-
CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=x); for(n=2, n, p += x^n*polcoef(x*p + CIK(p, n), n)); Vecrev(p/x)} \\ Andrew Howroyd, Aug 31 2018
A108528
Number of increasing mobiles (cycle rooted trees) with n generators.
Original entry on oeis.org
1, 2, 10, 92, 1216, 20792, 435520, 10793792, 308874016, 10021509632, 363509706880, 14576530558592, 640275236943616, 30573223563625472, 1576805482203235840, 87353392124392020992, 5173324070004374358016, 326160898887563325581312, 21810458629345555407462400
Offset: 1
-
Rest[CoefficientList[InverseSeries[Series[Log[(1+x)*Sqrt[1-x^2]], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
-
{a(n)=n!*polcoeff(serreverse(log((1+x)*sqrt(1-x^2+O(x^(n+2))))),n)} \\ Paul D. Hanna, Sep 11 2010
A335342
Number of free trees with exactly n nodes with fewer than three neighbors.
Original entry on oeis.org
1, 1, 2, 4, 9, 25, 70, 226, 753, 2675, 9785, 37087, 143487, 566952, 2274967, 9257906, 38113299, 158535204, 665364565, 2814924441, 11993967450, 51433198599, 221839745468, 961884808879, 4190783204515, 18339291329225
Offset: 1
For n=4, we have 1) a node with four neighbors, 2) two adjacent nodes with three neighbors each, 3) two adjacent nodes with two neighbors each, and 4) two adjacent nodes, one having two neighbors and the other three neighbors.
-
a[1] = 1; a[n_] := a[n] = 1+a[n-1] + Total[Product[Binomial[a[i]-1+Count[#,i], Count[#,i]], {i, DeleteCases[DeleteDuplicates[#], 1]}] & /@ IntegerPartitions[n,{2, n-1}]]; (* A108521 *)
b[1] = 1; b[n_] := b[n] = If[n > 2, 1, 0] + If[EvenQ[n], a[n/2] (a[n/2] + 1)/2, a[(n-1)/2] (a[(n-1)/2]+1)/2] + If[n > 3, Total[If[Max[#] <= If[EvenQ[n], n/2-1, (n-1)/2], Product[Binomial[a[i] - 1 + Count[#, i], Count[#, i]], {i, DeleteCases[DeleteDuplicates[#], 1]}], 0] & /@ IntegerPartitions[n, {3, n-1}]], 0];
Table[b[n], {n, 40}]
(* a[n] = A108521[n]; d[n] are coefficients of A^2(x) in g.f. *)
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #
-
\\ here S is A108521 as vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
S(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v, [0]))[n])); v}
seq(n)={my(p=x*Ser(S(n))); Vec(p + (x/2-1)*p^2 + (x/2)*subst(p, x, x^2))} \\ Andrew Howroyd, Jun 06 2020
Showing 1-10 of 10 results.
Comments